Search Results

Haus der Zukunft

Clay - Passiv Office-Building Tattendorf

The motivation for developing the project "Clay Passiv Office-Building Tattendorf" was the dissatisfaction with the situation of a great difference in the state of technology in three fields relevant to the research project: 1) sustainable production of energy , 2) sustainable energy conservation technologies and 3) use of sustainable building materials.

Haus der Zukunft

PEB - Plus-Energy-Office

An integrated technical energy plus office concept without additional building costs demonstrates the feasibility of such projects instancing a concrete office project with 50.000 m² floor area in Vienna with economical cost consideration.

Haus der Zukunft

aspern Vienna´s Urban Lakeside - subproject 1: Public Space and Micro Climate: Basics for climate sensitive planning in Aspern

The Project will derive planning examples and recommendations in order to optimize the building performance as well as outdoor amenity. The study will be based on a climate prognosis of the aspern area and compare different reference examples of construction and open space design.

Haus der Zukunft

Living-city Joint-space-potential Salzburg

Exemplary transformation of a traffic abused open urban structure. The target was to develop a model through supplementary housing as well as social measures and measures for the surrounding.

Haus der Zukunft

Evaluation of temperature differentiation on a room-by-room basis in passive house apartments

In the passive house Utendorfgasse a room–by-room temperature control was installed in 11 apartments. The experiences were evaluated from a technological and from a sociological point of view.

Haus der Zukunft

Sunny Energy Building: ENERGYbase - Office building of tomorrow

Energybase is a showcase project in terms of energy efficiency and use of renewable energies realized by the Vienna business agency. With 7.500 sqm net floor area ENERGYbase provides space for innovative business and research and development on the field of green energy.

Haus der Zukunft

School vent cool - Ventilation, cooling and strategies for high performance school renovations

Based on a building typology, strategies for prefabrication for high-quality thermic-energetic renovation of school buildings were developed. New solutions for ventilation systems to achieve good air quality and shading systems were analysed and tested. The "School vent cool" method for renovation of schools has been developed.

Haus der Zukunft

DALEC - Day- and Artificial Light with Energy Calculation

In the course of DALEC an online concept evaluation tool for architects, building engineers, lighting designers and building owners was developed. Although easy to use, the software accounts for the complex thermal and light processes in buildings and allows a simple evaluation of heating, cooling and electric lighting loads. Not only energy, but also user behavior were considered (e.g. in terms of glare protection) and visual and thermal comfort were evaluated. This novel and innovative, holistic approach makes sustainable and energy efficient building design possible for new buildings as well as refurbishment.

Haus der Zukunft

An innovative approach for facades with optimised noise protection and natural ventilation

The aim of this project was to advance the state of the art in the engineering of double-leaf building facades that facilitate natural ventilation while providing sufficient sound insulation. Realization of natural (window) ventilation is in some instances difficult due to a number of factors. Thereby, noise pollution (especially traffic noise) plays an important role. To address these issues, the project explored innovative solutions in terms of facade constructions for concurrent natural ventilation and noise control.

Haus der Zukunft

KELVIN - Reducing the urban heat island effect via improving the reflective properties of buildings and urban areas

The aim of this project was to estimate the potential to reduce urban heat islands via low-tech measures such as the variation of the surface albedo, using the City of Vienna as an example. The project has also assessed the energy savings and greenhouse gas emission reductions due to the decreased energy demand for cooling as a result of such measures.

Stadt der Zukunft

FIVA - Window prototypes with integrated vacuum glazing

This project targets the further development of windows with integrated vacuum glazing. Such glass products regularly feature a very low Ug-value, and their dimension is in comparison to insulation glass thin and light. As such, these products offer a new alternative for highly-insulating window constructions, and thus also for energy-efficiency measures in buildings. The project is based on the findings of a previous exploratory project (MOTIVE) and focuses on the construction of functional prototypes of vacuum glass windows together with business partners.

Stadt der Zukunft

VAMOS - Casement windows with vacuum glazing: Performance-Monitoring for Building retrofit

Knowledge consolidation of the exploratory project VIG_SYS_RENO; This project focused on the application of vacuum glass in existing casement windows for purposes of energetic performance improvement of buildings. Expected results include new insights about and a guideline for the application and utilization of vacuum glass products in existing window systems.

Haus der Zukunft

FFF-TaliSys - Freeform Systems for Daylighting to be Integrated in a Façade and in a Skylight

In the course of the project FFF-TaliSys novel daylighting systems based on freeform surface technology were developed and implemented into functional models, thus, innovative systems that solve the contradictory requirements of daylighting systems.

Stadt der Zukunft

Intensified Density - a small scale densification strategy for the suburbs by using modular construction

The project investigated whether a small scale densification strategy for the suburbs / intermediary cities, using modular construction, and existing infrastructure on empty plots of land, can offer a competing alternative to not only the sprawl of single family dwellings but also to large projects.

Stadt der Zukunft

PVOPTI-Ray, Optimization of reflecting materials and photovoltaics in urban environment with respect to energy balance and bioclimate.

Within the scope of the project PVOPTI_Ray the influence of reflection and energy balance on the performance of building integrated photovoltaics (PV) in complex urban environment have been investigated. Equally the influence of PV modules and of the energy conversion of solar energy at the PV module surface has an impact on micro climate and therefore also on pedestrians who are exposed to the radiation fluxes. This was also investigated.

Haus der Zukunft

LightFromFacade - Optimized Day- and Artificial Lighting by Facades

Multfunctional facades with integrated artificial- and daylighting systems had been simulated and evaluated regarding lighting and energy (lighting quality and energy demand). The results create basics for further façade developments and for academic education.

Stadt der Zukunft

VisErgyControl - Integral control system for daylight and artificial lighting for high visual and melanopic comfort with minimized primary energy consumption

Within the project VisErgyControl an integral, simulation-based, energy-efficient open loop daylight and artificial lighting control system had been developed. The research project focuses on the visual and melanopic requirements of users while minimizing the energy consumption for heating and cooling.

Stadt der Zukunft

EnerPHit-green concept Modernisation of a historic building with application of an aerogel insulation plaster

This demonstration project shows the comprehensive modernization of a historic building within the constraints of a regional protection zone. By using the Aerogel high-performance insulating plaster, a comprehensive energy-efficient building refurbishment had been realized without changing the outer appearance of the façade.

Stadt der Zukunft

RAARA - Residential Area Augmented Reality Acoustics

Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.

Haus der Zukunft

Urban wind energy - Development of methods for the assessment of small wind turbines in urban areas

The project "Urban wind energy" aims to create the basis for the assessment of roof-mounted small wind turbines (SWT) in urban areas. Therefore, methods for the characterisation of turbulent wind flow fields are developed and on the other hand the impacts of turbulent wind conditions with reference to selected turbulence indicators on the performance of small wind turbines are investigated. The overall aim of the project is to address the question how to evaluate sites in urban areas for the application of small wind turbines.