Search Results

Haus der Zukunft

Ventilation and heating in passive houses: Comparison of variants in terms of thermal comfort and sustainability

This projects aims at systematic resarch on thermal comfort and the sustainability of heating passive houses with and without air heating. The results of the comprehensive investigation of different variants will provide valuable information for building developers, planners and for funding decisions.

Haus der Zukunft

New4Old - New energies for old buildings

The project "New4Old - New energy for old buildings - Promoting the integration of RES & RUE measures in historic buildings" aims to promote the integration of renewable energy and energy efficiency technologies into historic buildings, and to create a European-wide network of Renewable Energy Houses in the different Member States of the European Union.

Haus der Zukunft

Demoobject energy-autarkic solarplant

Within the project at hand a production plant with store house and offices had been constructed. It serves as a reality testing field for long-term measurement of components and systems developed in previous projects. It serves for the demonstration of innovative energy systems and components for the interested public and for experts.

Haus der Zukunft

ThinkHome: Improved energy efficiency based on artificial intelligence in future homes

ThinkHome is a networked controlled home of the future with the ultimate goal to optimise energy efficiency and user comfort at the same time. On this way, smart interaction between all building services is of utmost importance. Goals of this project include the definition of a comprehensive knowledge base that holds all relevant building data, the evaluation of control strategies based on artificial intelligence and machine learning, as well as agent based software engineering.

Haus der Zukunft

Thermocollect - Solar active facade system, using direct solar radiation for temperature conditioning of buildings

The new Thermocollect Energy-Facade System allows to utilize the solar radiation that hits the facade on a on-demand-basis. The system works with a mechanically active mechanism which selectively gathers the solar radiation and additionally can be used as a cooling and heating system according to the local requirements.

Haus der Zukunft

Development of affordable building equipment and services for future "Energy Plus houses" (Plus-Hybrid)

"Plus-Hybrid" integrates knowledge and experience from current activities and complement them by adopting a holistic approach, considering the intelligent interconnection of components as well as managing the planned efforts and human resources in time. The goal of this project was to develop affordable building equipment and services for future "Energy Plus houses".

Haus der Zukunft

Potential and concepts for waste water heat recovery in combination with solar collectors and heat pumps (WRGpot)

The objective of the project is to find possibilities for the reduction of heat demand for hot water preparation of low energy and passive house buildings, in order to advance a further step into the direction of plus-energy buildings.

Haus der Zukunft

Training Offensive: Comfort Ventilation

Specialised theoretical and practical training for designers/installers of comfort ventilation systems in residential buildings.

Haus der Zukunft

SOLROSE FP - bionical designed solarthermal collector, final product developement

Archieved goal was the final product developement oft he innovative solarthermal collector SOLrose from prototype to seriel production. Enhancements of SOLrose with respect to the state oft he art: attractive design for frontage integration, serial production of system modules, distribution and assembling.

Haus der Zukunft

Cross building energy exchange: legal and economic framework and influencing factors (GebEn)

Using an interdisciplinary approach, the legal, technological and economic aspects of the cross-building exchange of heating and power were analysed separately within a metho­dological framework which includes different system configurations relevant to the specific situation in Austria.

Haus der Zukunft

ProKlim - Optimisation of Energy Efficiency of automated indoor climate systems by using weather forecasts

Investigation of the basic energy savings potential for buildings in commercial use by including weather forecasts as a variable. Additionally, a concept for integrating weather forecasts into the heating and air conditioning control systems in buildings is planned to be developed. Within the scope of the feasibility study, a detailed analysis of technological possibilities, including both hardware and software, will be conducted.

Haus der Zukunft

smartEXT - extended application boundaries for proven passive house technology

The present study aims to explore the application options for compact units (ventilation devices including micro heat pumps, developed for passive houses) in low energy buildings. Compact ventilation units for heat recovery, heating and domestic hot water shall bear the basic heating load, whereas peak loads shall be covered by newly-developed auxiliary heating equipment combined with intelligent control algorithms. This allows increased energy efficiency as well as cost effectiveness together with higher living quality and lower ecological load.

Haus der Zukunft

e80^3-Buildings - Sub project 2: Concept development

Based on the selection of suitable demonstration projects in Subproject 1 an innovative concept for passive and active building envelopes and energy supply of so called "Plus Energy Buildings" (renovation) has been developed.

Haus der Zukunft

SolarCooling Monitor - Evaluation of energy efficiency and operation modes of solar cooling systems for air-conditioning in buildings in Austria

Evaluation of ten newly installed solarthermal cooling systems in Austria as well as a large-scale plant in Lisbon to identify the plant’s performance using a monitoring analysis and comparing simulation.

Haus der Zukunft

SQUARE - A System for Quality Assurance when Retrofitting Existing Buildings to Energy Efficient Buildings

The project aims to promote a flexible quality assurance management for the retrofitting process. It leads to high quality renovations of residential multifamily buildings regarding energy improvement and improvement of indoor environment.

Haus der Zukunft

Model Predictive Control of Thermally Active Building Systems and Monitoring of two Test-Boxes

A robust, predictive controller which utilises weather forecast data to control thermally active building systems had been designed, researched and assessed in terms of energy efficiency and comfort compared to standard controllers, especially for cooling purposes. Simulations and real measurements using two "Test-Boxes" with thermally active building systems which are constructed and built for this purpose were used to analyse energy efficiency and comfort. Low complexity and transparency of methods and solutions should allow for transferability of all results to guarantee maximum usability for similar applications.

Fabrik der Zukunft

CPC-lightweight construction collector

On the basis of our relieable CPC-collector SOLARFOCUS S1 we develop the CPC-lightweight construction collector to get more material efficiency and maximum output of solar hightemperature energy.

Haus der Zukunft

Gründerzeit with future - demonstration project 3: KA 7 Kaiserstraße - Innovative renovation of a listed Gründerzeit building

A demonstration of how innovative measures, with highly efficient and contemporary standards and taking into consideration comfort and energy consumption, can be applied to a heritage listed building.

Nachhaltig Wirtschaften

Development of thermal solar systems with unproblematic stagnation behaviour

Research on the influence of collector hydraulics, piping and the arrangement of plant components on the stagnation behaviour of thermal solar systems.

Haus der Zukunft

SOCO.net - Solar Cooling Network for AUSTR(AL)IA

The main goal was to establish a long-term cooperation for "Solar Cooling" between the Austria Solar Innovation Center (ASiC) and the Center for Sustainable Energy Systems (CSES) at the renowned Australian National University (ANU) in Canberra. Combining the competences of both institutes immediately offers the chance to boost the penetration of the European and the Australian market with this new technology for cooling in sustainable buildings.