Search Results

Stadt der Zukunft

Joining Cards - Investigation of de-constructable fastening and joining techniques for the development of mono-material interior systems made of cardboard

Strategic examination of cardboard products and paper-based materials for the development of de-constructible interior systems and the definition of building components and their interfaces. The result forms the basis for further research projects in the form of a comprehensive knowledge gain.

Stadt der Zukunft

BIMstocks - Digital Urban Mining Platform: Assessing the material composition of building stocks through coupling of BIM to GIS

The main goal of BIMstocks is the development of a method for the digital capturing of the material composition of the existing building stock for follow up modelling of an Urban Mining Platform as well as for the prediction of the recycling potentials.

Stadt der Zukunft

GreenTech-Renovation - Energetic Renovation of Glass Buildings of Architectural Value

The focus of the GreenTech-Renovation project is to find innovative solutions for the energetic renovation of architecturally valuable buildings with a high proportion of glass. A future-oriented building physics concept that includes the use of alternative forms of energy is to be developed for this purpose. With ecological and social commitment, an intelligent usage concept could strengthen the energetic renovation concepts and guarantee their sustainability. The 10-Rs of the circular economy (Refuse, Rethink, Reduce, Reuse, Repair, Refurbish, Remanufacture, Repurpose, Recycle, Recover) will serve as a guideline.

Stadt der Zukunft

greenWATERrecycling – utilization of greywater for energy recovery and for providing greywater-filtrate for watering green walls

Development of a system for energy-recovery of waste heat of greywater and of greywater-filtrate in ordert o reduce the energy consumption of hot water supply and the water consumption for irrigation.

Stadt der Zukunft

Flucco+ - Flexible user comfort in quarter-hourly CO2-neutral Positive Energy Districts (PED)

The aim of the project is to improve the planning basis for the construction and operation of energy flexible buildings in three specific areas. First the further development of existing models of thermal comfort for dynamic situations, second the quantification of future energy grid usefulness and third the holistic testing of the developed comfort and CO2 model at three potential positive energy districts (PED), taking into account the ecological assessment as well as the life cycle costs.

Stadt der Zukunft

3D*3B - 3D-Concret Printing, Reinforcement for low carbon and bending stressed structures.

The project is about 3D printed structural elements and their integration in building structures. The focus is predominantly set on bending stresses structural elements like panels and slabs. Results will point out technical, logistic and climate relevant aspects.

Stadt der Zukunft

CO2 neuBau - The CO2-neutral Construction Site: a Contribution to the Climate Protection by the Austrian Construction Industry

Identification of all direct and indirect CO2, respectively, GHG emissions generated at construction sites. Analysis of the framework conditions and technologies towards demonstrating the options for their control. In parallel, added values, such as cost-benefit advantages of a CO2-neutral construction site, were outlined and quantified.

Stadt der Zukunft

DiCYCLE - Reconsidering digital deconstruction, reuse and recycle processes using BIM and Blockchain

DiCYCLE aims at identifying, analysing and mapping current End-of-Life processes in the building industry, as well as optimizing those for digitalization, using BIM, Blockchain and Smart Contracts. The goal is to enable sustainable digital planning, construction and deconstruction workflows for reuse and recycling of building materials and components along the life cycle.

Stadt der Zukunft

M-DAB - Digitise, analyse and sustainably manage the city's material resources

The research project investigates how digital technologies can support us in determining the existing and future material resources in construction qualitatively (building materials and their recycling) and quantitatively (quantities of building materials).

Stadt der Zukunft

Vertical Farm Aspern - Democratization of vertical farming under consideration of parameters of circular economy

Planning, construction and optimization of a vertical farm for urban food production, involving the users in the operational management. The building and the operator concept represent the entire food value chain, from planting to selling.

Stadt der Zukunft

The Green Parking Space – Utilization of urban parking areas for production of biomass

Many traffic areas in urban environments are actually used as such only a small fraction of the time. Subject of this project was to investigate the possibility of using those areas by additional integration of photobioreactors for the production of biomass, integrating such systems to the maximum extent into the urban substance and energy cycles.

Haus der Zukunft

BIMaterial Process Design for Material Building Pass

Building Information Modelling supported compilation of a Material Building Pass; as a qualitative and quantitative documentation of the material composition of, and the material distribution within, a building structure. This project is a central milestone towards standardized, BIM-generated building material passes.

Stadt der Zukunft

SAVE circular approaches for green buildings!

The project demonstrates the cycle and use of synergies in an ARWAG residential building from the extraction of valuable raw materials through a urine treatment plant (fertilizer) using energy recovery measures (heat recovery, heat pump, photovoltaics) to the use of the fertilizer for the generously designed greening measures and the associated effects on the microclimate.

Stadt der Zukunft

Repair & Do-It-Yourself Urbanism (R&DIY-U)

The project follows the aim to analyze and to strengthen the transformative potential of Repair & Do-It-Yourself Urbanism with regard to a fundamental change of the existing poor sustainable handling of commodities in selected urban districts, their infrastructures and dominant business and private household practices into resilient areas.

Stadt der Zukunft

Urban Mining - Energy and resource savings due to urban mining

The use of natural resources in long-lived products and buildings has led to the build-up of enormous urban material stocks. The present project analyses the potential of these urban mines to increase the resource efficiency of modern cities.

Stadt der Zukunft

M-DAB2: Material intensity of inner development - resource assessment and localization of urban development potentials

For the first time, the material intensity of inner development (in terms of material quantities) for different design variants is to be considered in the evaluation of inner development potentials. A set of methods for the holistic evaluation of potential areas and different development variants and scenarios for resource-saving inner development will be created.

Haus der Zukunft

AR-HES-B – Energy storage, production and recovery of valuable substances in wastewater treatment plants

AR-HES-B develops technologically based concepts of municipal wastewater treatment plants in order to convert them from energy consumers into a hybrid energy provider, energy storage and a provider of resources. The concept enables wastewater plants to turn into an important platform in the regional energy and mass transfer.

Haus der Zukunft

SynENERGY - Energy optimised settlement development by making use of synergies of energy efficiency, spatial planning and building culture

SynENERGY aims at an innovative, holistic approach to urban district optimization. The project targets a comprehensive analysis of the framework and urban development concept which includes not only optimisation of sustainable energy supply and use but also increased material flows (construction and disposal) at urban district level.

Haus der Zukunft

R-Bau - Development of a replicable deconstruction strategy for residential buildings to force the recovery-oriented dismantling

The aim of the project was to develop a replicable deconstruction strategy for residential buildings to force the recovery-oriented dismantling. The key aspects of the project are the development of standardized building models in order to analyse the recovery-oriented dismantling process, the design of a deconstruction catalogue and the transfer of the project findings to refurbishment, design and erecting of residential buildings.

Haus der Zukunft

SURO - The urban underground as mine? Potential of secondary resources in subsurface infrastructure systems

Feasibility of a resource cadaster to inventorize, characterize and locate material stocks in subsurface infrastructure networks. The results are used for the economic assessment of secondary resource potentials.