Search Results
VITALITY District - Optimized energy concepts in the early planning phase of resilient, energy-efficient neighbourhoods
The aim of the VITALITY District project is to coordinate the total (electrical and thermal) load and generation profile in the design phase of urban areas and neighbourhoods in order to optimize the energy concept of energy-efficient districts. Hence smart city indicators in detailed level (buildings, individual technologies, public spaces) as well as models, principles and catalogs of criteria for energy-optimized urban neighbourhoods are going to be created. The results are going to be presented in compact form on the district level in order to serve as input for future urban planning projects.
STP2030, St. Pölten 2030: KlimaNEUTRAL + KlimaFIT
A broadly based, participatory strategy process for the co-creative development of the “Roadmap to Climate Neutrality” St. Pölten by 2030. The roadmap is based on a shared vision, which is differentiated into transformation paths in different fields of action. The result is a “climate of change” in urban society that serves as the basis for participation in tenders, cooperation and implementation on the way to climate neutrality.
metaTGA - Metadata and process models for open BIM in building service engineering
The objective of this research project is to design a methodology for developing data and process models and to apply them by modelling selected MEP systems. A particular but not exclusive focus is put on the renewable heating technologies, e.g. heat pumps, solar heat and biomass as well as ventilation systems. The data and process models developed in this research project will be scientifically evaluated in two pilot projects. The models, the approaches taken during development and the project team’s experiences with the pilot application of the models will be disseminated openly.
Villab – Exploration of a Villach innovation laboratory for the cooperative development of sustainable neighbourhoods
The "Villab - Probe" project serves to check the feasibility of an urban innovation laboratory to accelerate the transformation of Villach districts towards climate neutrality. Assuming positive feasibility, the cooperation with relevant stakeholders will be deepened and a business plan drawn up for a future innovation laboratory.
KityVR - Artificial intelligence techniques to implement CityGML models and VR visualization
The goal of the project is to link 3D city models and virtual reality for energy-relevant applications as key-enabler for digital planning, construction and operational management. Missing data will be calculated using statistical enrichment methods.
Biotope City - construction manual for the green city of the future
"Biotope City" is an overall concept for the implementation of comprehensive urban greening with the aim of using the regenerative mechanisms of nature. With this approach, quality of life is to be comprehensively, sustainably and cost-effectively increased and resilience against extreme weather events in cities will be improved. The project aims to generate realistic components of a "construction manual" for the green city of the future, which are generalizable and transferable.
SUPERBE - Potential of Superblock-concepts as contribution to planning energy-efficient urban quarters
The exploratory study SUPERBE for the first time looks into the applicability and potential effects of Superblock concepts in an Austrian urban context in order to assess their contribution to energy-oriented urban planning.
Salzburg:KanS - Salzburg: Climate-neutral city
Salzburg:KanS aligns the vision and climate protection goals of the city of Salzburg with the climate neutrality targets of the province and estimates the sector-specific CO2 reduction contributions until 2030. Based on these contributions, the project develops implementation strategies for the entire city as well as the focus areas of “climate-neutral mobility” and “climate-neutral neighborhoods”.
URSOLAR - Optimization of SOLAR energy usage in URban energy systems
URSOLAR provides decision makers with a roadmap for the integrated use of solar energy in urban environments. The roadmap shows, how photovoltaics- and solar-thermal installations can be used in an ecological, economical and socially optimal way whilst considering legal requirements as well as infrastructural conditions in typical city quartiers and stakeholder interests.
ECC – EnergyCityConcepts – Development of a methodology and concept for the implementation of sustainable energy systems in cities by the example of Gleisdorf and Salzburg
In the context of this project two concrete model regions (small city Gleisdorf and urban city quarter Salzburg-Schallmoos) will be developed and tested with new methodical approaches (interdisciplinary urban and regional energy planning, modeling and simulation). An ambitious political commitment of both model regions is a 100% renewable or rather CO2-neutral energy supply.
The Green Parking Space – Utilization of urban parking areas for production of biomass
Many traffic areas in urban environments are actually used as such only a small fraction of the time. Subject of this project was to investigate the possibility of using those areas by additional integration of photobioreactors for the production of biomass, integrating such systems to the maximum extent into the urban substance and energy cycles.
F4WM - Fit4WienerMission
Preparation for the EU Urban Mission by updating goals and strategies (Smart City Wien Framework strategy, Climate-Roadmap), developing a manual for climate-neutral Viennese neighbourhoods and concepts for the participation of citizens (Climate Citizens' Council) and businesses (Climate Agreements), as well as a city-internal capacity and structural planning.
Manage_GeoCity - Development of a method for the coordinated management of geothermal energy in urban areas
Based on the urban region Graz a method had been developed for the coordinated use and management of shallow geothermal energy for heating and cooling as well as seasonal heat storage in urban regions. Ground water flow, different geologic conditions, heating and cooling demand, heat input from solar collectors and industrial waste heat and the possibilities of seasonal heat storage in the subsurface were considered.
Energy-Sponge-Bruck (Energieschwamm Bruck an der Mur)
The aim of the exploration-study for the urban region Bruck/Oberaich "Energieschwamm Bruck" or "Energy-Sponge-Bruck" was to establish clear and stringent basics for a flexible development of the future energy system. Therefore an energy development concept as well as a cadaster for short-term implementation measures had been applied. The structured, Bruck-based approach acts as framework for a general energy-conception-method, valid for small and medium urban regions with 10,000 to 20,000 inhabitants.
Intensified Density - a small scale densification strategy for the suburbs by using modular construction
The project investigated whether a small scale densification strategy for the suburbs / intermediary cities, using modular construction, and existing infrastructure on empty plots of land, can offer a competing alternative to not only the sprawl of single family dwellings but also to large projects.
PVOPTI-Ray, Optimization of reflecting materials and photovoltaics in urban environment with respect to energy balance and bioclimate.
Within the scope of the project PVOPTI_Ray the influence of reflection and energy balance on the performance of building integrated photovoltaics (PV) in complex urban environment have been investigated. Equally the influence of PV modules and of the energy conversion of solar energy at the PV module surface has an impact on micro climate and therefore also on pedestrians who are exposed to the radiation fluxes. This was also investigated.
BIMaterial Process Design for Material Building Pass
Building Information Modelling supported compilation of a Material Building Pass; as a qualitative and quantitative documentation of the material composition of, and the material distribution within, a building structure. This project is a central milestone towards standardized, BIM-generated building material passes.
Green and Resilient City - Management and planning tools for a climate-sensitive urban development
The aim of the project was to provide a "proof of concept" of a control loop and tool set for the management, optimization and evaluation of green and climate-sensitive urban (district) planning- The tool set consist of urban and open space planning instruments as well as climate simulations at different scale levels.
UrbanEnergyCells - Requirements for the implementation of energy cells in future energy system designs
The transformation of the currently hierarchical electricity system into a renewable, decentralized electricity system poses major challenges for the actors in the energy industry and society. Most of the installed decentralized renewable energy sources are installed in rural areas, due to easier legal implementation and shorter decision-making pathways. However, the energy density in urban areas is significantly higher, resulting in a transport of electrical energy to the consumption centers.
digiactiv - digital transformation for more interactivity in MEP-(mechanical, electrical and plumbing-)planning
The aim of the digiactiv project is to improve the interoperability between the different stakeholders in the building construction sector using open and neutral semantic data models. With digital transformation processes, digiactiv helps to increase the quality of planning and the operation of buildings, as well as to minimize the interface risk between various stakeholders.