Foto: ChristophorusHaus

Search Results

PEAR – Test facility for energy efficient automation and control of buildings

The energy demand calculated in the design phase often differs from measured values in the actual building operation. This projects reviews building automation and operation by presenting a solution how to assess energy efficiency of control strategies in the fields of air conditioning systems, concrete core activation and free cooling. The results are implemented in the demonstration building "Post am Rochus".

VERTICALurbanFACTORY

The project researches possibilities and potentials of highly efficient use of space through modern concepts of "stacked" functions and vertical production.

ENUMIS - Energetic effects of urban manufacturing in the city

The project examines the challenges of urban manufacturing (UM) from the energy perspective and shows opportunities arising from the implementation of UM concepts for the future design of sustainable energy systems for cities.

EnergyCityConcepts - Methods and concepts for the implementation of sustainable energy systems in cities

Two concrete model regions (small city Gleisdorf and urban city quarter Salzburg-Schallmoos) will be developed and tested using new methodical approaches (interdisciplinary urban and regional energy planning, modeling and simulation). Therefore, it is aimed to substantiate scenarios and concepts for the implementation of defined targets on technical, ecological and economic criteria.

CityCalc - Calculation Tool for Energy-Efficiency in Urban Planning

To assess the energy performance of urban planning projects in early design stages with low input and evaluation effort within the project CityCalc, an easily applicable planning and evaluation tool will be developed.

ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts

In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.

Spatial Energy Planning for Smart City Quarters and Smart Regions

In the project ERP_hoch3 energy related policy research in three Austrian agglomerations (Vienna – Lower Austria, Graz – Styria and Vorderland-Feldkirch) has been done, scenarios of the current state and the target state have been modelled and calculated. The aim was to develop generic transferable recommendations for spatial energy planning in agglomerations.

Smart Pölten 2.0 Holistic view on a Vertical Farm in preparation for a demonstration project for the city of St. Pölten

The city of St. Pölten forsees great potential in Vertical Farming with regard to the objectives related to the concept of the Smart City program - linking local food production, quality of life by reducing resource consumption. This has to be evaluated by combining Vertical Farms with existing living buildings. Eco-social and socio-economic considerations play an important role in this process.

VisErgyControl - Integral control system for daylight and artificial lighting for high visual and melanopic comfort with minimized primary energy consumption

Within the project VisErgyControl an integral, simulation-based, energy-efficient open loop daylight and artificial lighting control system will be developed. The research project focuses on the visual and melanopic requirements of users while minimizing the energy consumption for heating and cooling.

EPIKUR – Energy efficiency potential of intelligent measures of urban densification

The present research proposal focused on the possibility, implications and consequences of "inwards urban expansion" through densification of the existing urban tissue. In this context, densification is not only approached through known and common aspects of building regulations and guidelines, but in view of what is actually possible to achieve.

SynENERGY - Energy optimised settlement development by making use of synergies of energy efficiency, spatial planning and building culture

SynENERGY aims at an innovative, holistic approach to urban district optimization. The project targets a comprehensive analysis of the framework and urban development concept which includes not only optimisation of sustainable energy supply and use but also increased material flows (construction and disposal) at urban district level.

SIMULTAN - Simultaneous planning environment for buildings in resilient, highly energy efficient and resource-efficient districts

Synopsis This project enables the opportunity for an essential energy efficiency increase within overlapping buildings, to achieve the objective of resilient cities and districts with respect to a high quality of life, resource sustainability and energy efficiency. The goal is a workable tool based on a multidisciplinary planning approach, to support the decision finding process in order to design both refurbishment projects and new developments within a highly efficient city.

Smart Services - Smart Services for resource optimized energy systems in urban districts

The concept of a smart city explicitly refers to a sustainable city development. To apply smart city concepts in practice, it is essential to develop practice- and profit-oriented business models (smart services), which at the same time generate social and ecological benefits. Smart services are developed for the application in three specific city development areas and their practicability is verified in a comprehensive stakeholder process with decision makers.

E_PROFIL - neighborhood profiles for optimized energy transformation processes

E_PROFIL is a set of methods (an IT-supported toolkit) for the elaboration of neighbourhood profiles. The aim of the project is to facilitate an energy and resource efficient development in the planning practice of Austrian cities. Furthermore, the project is an important asset for research and planning activities in Europe and can also be applied to other neighbourhoods.

SOFC4City - SOFC-waste heat utilization for buildings and industry

In this project the application of a solid oxide fuel cell (SOFC) for energy supply (heat and power) of urban areas will be investigated. Due to the high temperature level of the produced heat it would be possible to use this heat for the energy supply of different heat and power consumers (residential buildings, industrial plants, etc.). One aim is to provide the SOFC-heat at several temperature levels in order to establish the advantages of the fuel cell. On the one hand the legal and market-based conditions will be evaluated, on the other hand the technological feasibility will be scoured by the use of CFD-simulation of the heat production.

ecoRegeneration: Development of a "Merit-Order" in order to assess regeneration heat for geothermal probes within urban residential neighbourhoods.

In urban residential areas there are not enough active-cooled usages, to use the waste heat of the cooling process as required regeneration heat for geothermal probes; free cooling of the apartments is not sufficient. The project is developing various options (waste heat from commercial uses in the ground floor zones of residential buildings, by using waste heat of data centres, additional installation of heat generation systems for regeneration) within the urban settlement area, business models and is calculating life-cycle-costs of all solutions. The result should be a kind of "merit order" for regeneration heat.

PRoBateS - Potentials of planning and building legislation for energetically sustainable city structures

The aims of this project are to analyse planning and building legislation in order to identify barriers, potentials and suitable courses of action for energy-orientated policy measures. Specific policy recommendations are developed with a view to increasing the sustainability of energy-related city structures. For these purposes the project combines two different disciplinary approaches: a thorough legal analysis and a spatial structure and quantitative impact assessment.

Eco.District.Heat - Potentials and restrictions of grid-bound heating systems of urban areas

Aim of the project Eco.District.Heat is to provide strategic decision-making support that enables Austrian towns and cities to deal with aspects of grid-bound heating (and cooling) systems in accordance with integrated spatial and energy planning from a holistic perspective when elaborating urban energy concepts.

Urban district heating extended – Development of flexible and decarbonized urban district heating systems

Development of innovative urban district heating systems by integration of long-term thermal storage, large scale heat pumps, large scale solar thermal installations, waste heat recovery and analysis and evaluation by simulation. The results of this project will provide templates for technology selection, system design and merit order for new urban district heating areas.

to Start