Search Results
OctoAI: The next generation of high-performance edge AI for smart buildings
Current IoT (Internet of Things) solutions for buildings depend almost exclusively on cloud infrastructure and cloud-based services. In the OctoAI project, we are developing the next generation of high-performance Edge AI (Artificial Intelligence) for smart buildings. In OctoAI, we combine the concept of edge AI with user-centric energy services and test two edge-ready applications.
Digital Twin / Building Tracker - Coupling of building simulation with a physical building in real time
The goal of the project ist o couple an office building during operation with its virtual twin, the "building tracker", which will be developed and applied for the first time within the project. Thanks to coupling of monitoring and simulation, innovative building energy management of nearly zero-energy building is possible.
Beyond - Virtual Reality enabled energy services for smart energy systems
Collaborative R&D project to develop the next generation energy services with the interplay of various technologies: Virtual Reality (VR), machine learning, physical simulation and Internet of Things (IoT) platforms.
baubehoerde.at - Development of a Vision 2030 for a Digital Building Authority and Recommendations for Action in Austria
In Austria, planning permission applications are submitted and managed largely manually. The aims of the baubehoerde.at project are to evaluate the potential and limitations of digitizing building approval processes and to create a Vision 2030 strategy for a digital building authority.
LINE-FEED - Plug-in Photovoltaic Storage for the Wall Socket
The project LINE-FEED develops technologies that are required for a photovoltaic storage system which can be installed by anybody by simply plugging it into a wall socket. The aim is to create a storage system for households in urban areas that do not have the possibility to install a photovoltaic system themselves.
REal - The laboratory for Integrated Regional Renewable Energy Systems
In the REal project, a holistic, scalable and user-friendly concept is created, whereby sector-coupled, municipal energy systems with 100% renewable energy can be implemented, considering all necessary aspects from planning to operation, reducing design costs and accelerating an Austria-wide implementation.
see-it - Camera based, user centric daylight control system for optimized working conditions
In the project technologies in the field of building construction and building automation are being researched for quality and performance improvements in the workplace. The aim is to individualize the control of sun protection to the people who need to be protected from glare and overheating and hope to see through.
ENUMIS - Energetic effects of urban manufacturing in the city
The project examines the challenges of urban manufacturing (UM) from the energy perspective and shows opportunities arising from the implementation of UM concepts for the future design of sustainable energy systems for cities.
EnergyCityConcepts - Methods and concepts for the implementation of sustainable energy systems in cities
Two concrete model regions (small city Gleisdorf and urban city quarter Salzburg-Schallmoos) will be developed and tested using new methodical approaches (interdisciplinary urban and regional energy planning, modeling and simulation). Therefore, it is aimed to substantiate scenarios and concepts for the implementation of defined targets on technical, ecological and economic criteria.
Storage Cascade MZ: Storage cascade system to establish urban PLUS energy systems on the example of the city of Mürzzuschlag
In the "Storage Cascade MZ" project, battery storage systems are implemented on different grid levels in the city of Mürzzuschlag, whose measurement data enable an integrated grid monitoring and create the basis for a future expansion of the nominal power of photovoltaic (pv) systems.
CHALLENGE - Highly efficient use of hot gas and waste heat in air/water heat pumps for plus-energy buildings and quarters
CHALLENGE aims to further develop the system concept for air-to-water heat pumps in such a way that they can be used efficiently and without the above mentioned negative effects in densely built-up urban areas. In concrete terms, validated simulations and a functional model of the overall system on a laboratory scale are to be used to demonstrate that the concept can save 10% of electrical energy, reduce the noise of outdoor units in summer to a minimum and prevent the formation of local heat islands.
ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts
In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.
BIMpeco - Environmentally relevant product data in collaborative BIM environments
Construction products can pose a risk to the environment and health due to their pollutant content or releases. In the BIMpeco project, workflows and data structures for digital information management of this environmentally relevant product data are developed. For this purpose, the new ISO standards ISO 23387 and ISO 19650-1 are tested and synchronized with established process flows. The project results will be made available on an open-source basis and can be integrated into any Common Data Environment (CDE) that complies with the standards mentioned. The BIMpeco project is the first to lay the foundations for product information management of environmentally relevant properties in the CDE, covering the entire lifecycle and supply chain.
Symbiose-4-I&C - Optimal decentralized hybrid storage technologies among different energy systems -4-Industry and Commerce
The project Symbiose-4-I&C analysed the coupling of existing energy networks/-carriers, established on centralized energy network nodes or directly next to a consumer (households, industry and commerce) and the benefits of applying decentralized storage technologies. The optimal position, dimension and the right storage and conversion technology and an optimal energy wide operation of larger consumer groups were estimated for an urban model region.
VisErgyControl - Integral control system for daylight and artificial lighting for high visual and melanopic comfort with minimized primary energy consumption
Within the project VisErgyControl an integral, simulation-based, energy-efficient open loop daylight and artificial lighting control system had been developed. The research project focuses on the visual and melanopic requirements of users while minimizing the energy consumption for heating and cooling.