

Data Analytics and AI to control Energy Grids

29.04.2019

Georgios Chasparis Tel. +43 7236 3343 857 georgios.chasparis@scch.at www.scch.at Mario Pichler Tel. +43 7236 3343 898 mario.pichler@scch.at www.scch.at

Contents

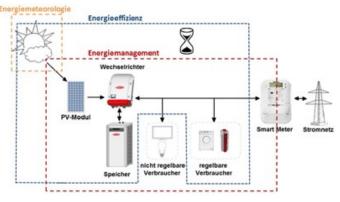
Artificial Intelligence (AI)

What is AI ?

Market Organization & Challenges

- Current market structure
- Future challenges
- Flexibility & Demand Response
 - Paradigm shift
- Conclusions & Discussion
 - Al in Smart-Grid

ARTIFICIAL INTELLIGENCE


What is Artificial Intelligence?

For thousand of years, we have tried to understand how we think
How a human being can *perceive*, *predict* and *manipulate* the world

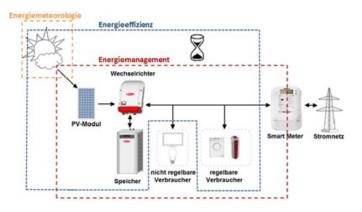
- Artificial intelligence (AI) goes further:
 - It attempts not just to understand but also to build intelligent/rational agents
- What is an *intelligent* or *rational agent*?
 - Any decision making process, problem solver, etc., that does the right thing!
 - However, what is the right thing?

Artifacts that behave as *humans*

Artifacts that behave rationally

AI according to "giants"

Thinking Humanly	Thinking Rationally
"[The automation of] activities that we associate	"The study of the computations that make it pos-
with human thinking, activities such as decision	sible to perceive, reason and act."
making, problem solving, learning,"	(Winston, 1992)
(Bellman, 1978)	
Acting Humanly	Acting Rationally
Acting Humanly "The act of creating machines that perform func-	Acting Rationally "AI is concerned with intelligent behavior in
"The act of creating machines that perform func-	"AI is concerned with intelligent behavior in

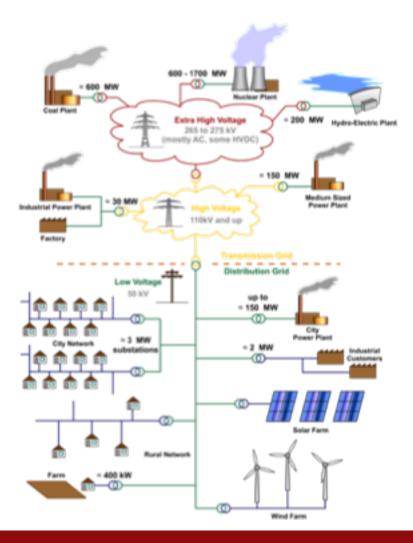

"Driven by Needs" vs "Driven by Challenges"

- Build artifacts driven by challenges
 - Build a robot that walks
 - Build a robot that greets people
 - Build a robot that jumps

- Build artifacts driven by needs
 - Energy consumption should be minimal
 - System should be stable
 - Increase absorption of renewables

Artifacts that behave as humans

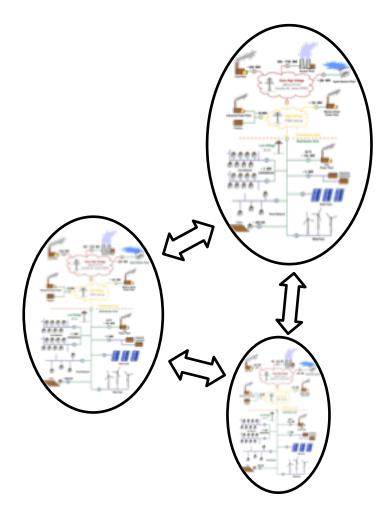
Artifacts that behave rationally



MARKET ORGANIZATION & CHALLENGES

Organization of the Electricity Grid

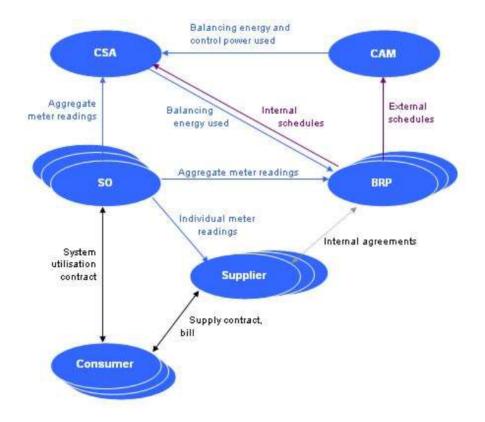
- Multiple stakeholders
 - SO (System Operator)
 - Operator of Transmission/Distribution Grid
 - CAM (Control Area Manager)
 - Checks and accepts schedules between BG's and other control areas
 - CSA (Settlement and clearing agent)
 - Clearing and settling balancing within a control area
 - BRP (Balance responsibility party)
 - Representing a balance group to CSA
 - Suppliers/Producers
 - Traders/Consumers


Microgrids/Balance Groups for Resilience

Distribution of control management

- Schedules/Balancing are controlled separately by independent balance groups or microgrids
- A balance group contains both suppliers and consumers
- Injection and withdrawl of electricity is balanced
- Exchange of electricity between balance groups

Increased resilience due to


- Better control of renewables integration
- Easier scheduling of electricity exchanges
- Easier/secure integration of demand response
- Immediate response to local imbalances

Austrian Electricity Market

- Balance-Group Organization
 - Receives meter readings from SO
 - Receives contract/bill agreements between suppliers and consumers
 - Sends internal schedules (between BGs of the same control area) to CSA
 - Sends external schedules (between BGs of different control areas) to CAM
- Schedules
 - calculated based on *forecasted* quantities
 - Load consumption
 - Weather data
 - Renewables' generation

Challenges/Issues: Market Design (based on T&D Europe)

Equal access to markets,

- Consumers should be given the incentives to provide flexibility in consumption
- Technological advancements are required to enable this

Contractual arrangements

- The regulatory framework shall enable the creation of clear, simple and transparent contractual arrangements for demand response
- Clear principles for residential and non-residential customers
- Enabling and integrating varying and diverse consumer preferences/behaviors

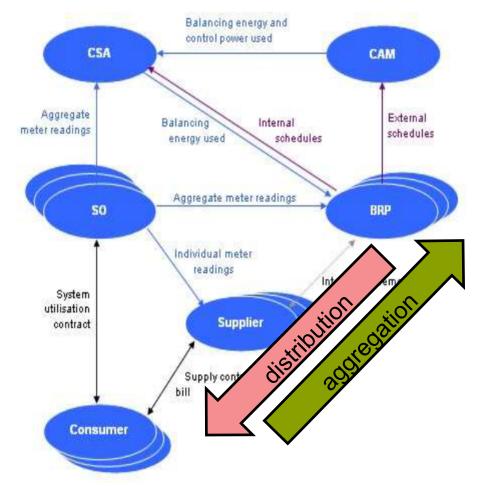
Data management

- Data management shall be implemented by the whole value chain
- Privacy and security, transparency, accuracy are of vital importance

Grid operators should enable and use flexibility

• An EU initiative is needed to incentivize grid operators' investment into smart-grid solutions

FLEXIBILITY & DEMAND RESPONSE


The role of AI

Higher integration of consumers

- for more flexible demand response
- for higher absorption of renewables
- for efficient utilization of energy
- for reducing energy dependencies

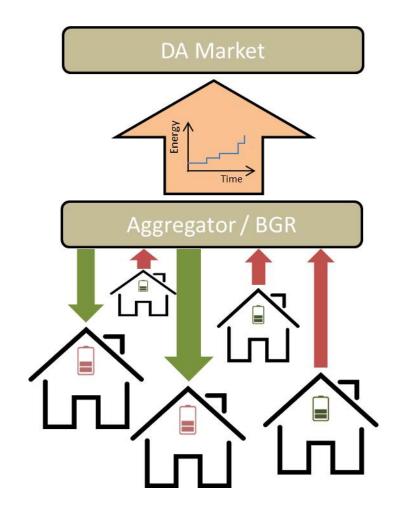
The role of Al

- Aggregator/group level
 - Enable group-level flexibility exchange
- Inter-building level
 - Enable inter-building electricity exchanges
- Building level
 - Actively control and optimize energy
 - Optimally respond to market signals
 - Efficiently integrate users' preferences and behavior

Demand Response @ Aggregator Level (1/3)

Direct control over batteries

- Aggregator forecasts the amount of energy that could additionally be stored or withdrawn from the users' batteries
- Aggregator *calculates* the optimal amount of electricity that can be exchanged (energyprice curve)


Advantages

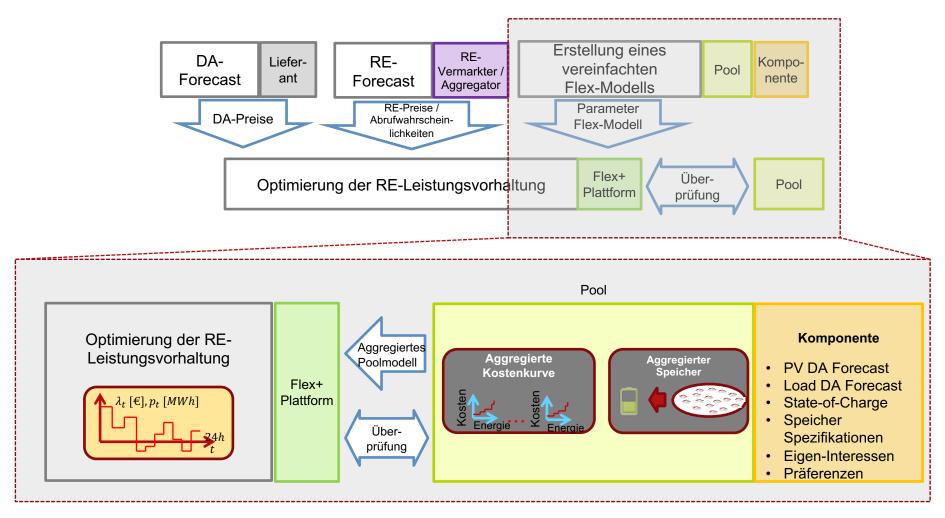
- Apart from forecast uncertainties, the available flexibility can be directly computed/exchanged
- Higher degree of security!

Disadvantages

- Limited amount of flexibility
- Users are not part of the optimization!

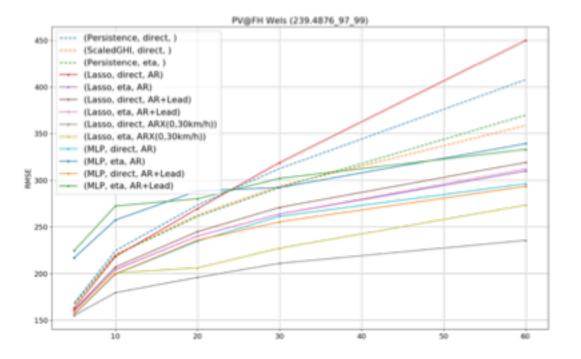
@MBS+ FFG # 853674

Demand Response @ Aggregator Level (2/3)


Challenges

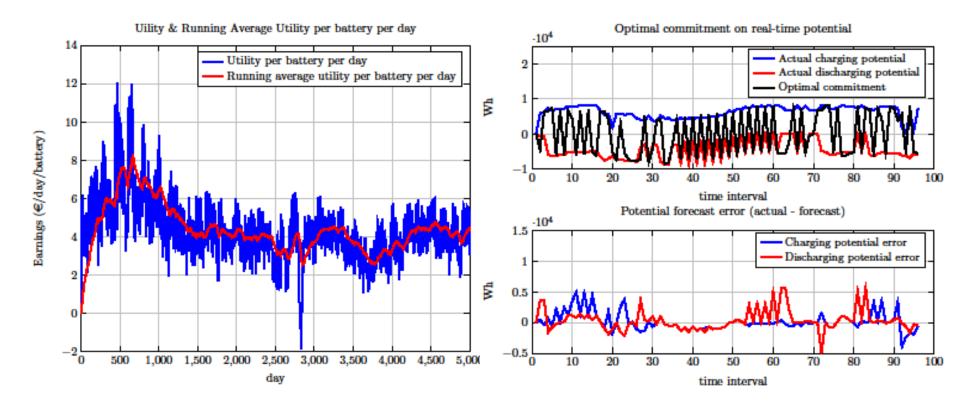
- Information exchange and data management
- Optimization complexity and accuracy
- Multiple optimization levels (depending on the market participation: RE/DA/ID)
- Multiple modeling/approximation levels (flexibility modeling/forecast, cost approximation)
- Real-time response

@Flex+ FFG # 864996


Demand Response @ Aggregator Level (3/3)

@Flex+ FFG # 864996

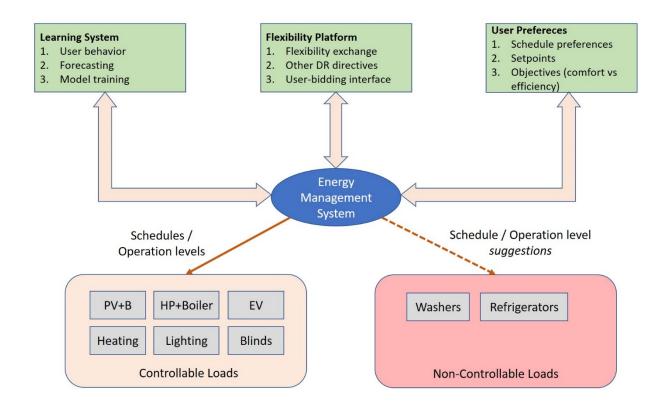
PV Forecast Accuracy & AI Challenges



Challenges

- Bad forecast accuracy for long horizons
- Flexible optimization (ability to update/correct decisions during the day)
- Need for *lower-level* and *real-time* corrections (inter-building real-time exchange)

Reinforcement Learning for Optimal Flexibility Extraction

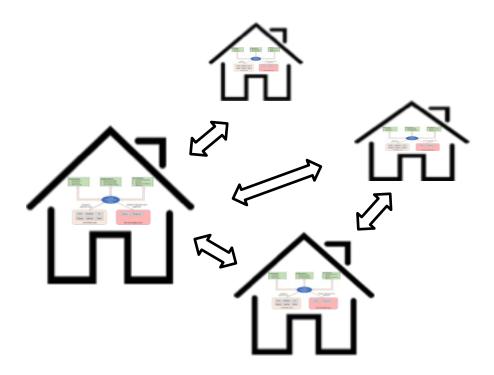


software competence center

hagenberg

- Challenges
 - Learning-based optimization to minimize the effect of forecast errors

Demand Response @ Building Level



Challenges

- Increase flexibility by integrating aggregator/DR objectives to scheduling equipment
- Adjust optimization to user behavior and incorporate user preferences
- Upgrade of building equipment (sensors/actuators)

Demand Response @ Intra-Building Level

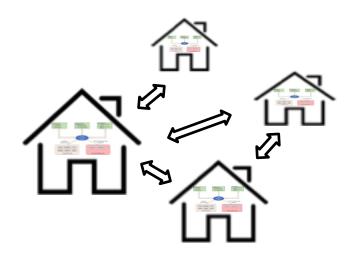
Challenges

- Increase flexibility by allowing real-time exchange of flexibility between buildings
- New market design paradigm

CONCLUSIONS & DISCUSSION

Paradigm Shift

End-users as "first-class citizens"

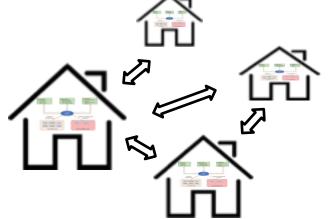

- No clear separation between generation and consumption
- Active participation of end-users in demand-response
- Increased *flexibility* in adjusting load
- Increased efficiency and reduced prices
- Increased security through active load adjustments

Equipment upgrade

- New technologies for active market interaction
- New sensors/actuators for efficient energy management

The role of Al

- Develop "rational"/"intelligent" distributed agents
- Distribution implies new challenges/opportunities for
 - Stability, Resilience, Efficiency
- Modeling Approximation for complexity reduction
- Forecasting (for improving accuracy)


AI in Smart-Grid

Al for forecasting

- Advanced methodologies for increased forecast accuracy
- Aggregation/Modeling and Complexity is a great challenge
- Exploit/develop deep-learning and aggregation techniques

Al for optimization

- Multiple optimization levels (aggregator, building, intra-building)
- Extremely high complexity for standard optimization techniques
- Distributed (learning-based) optimization seems appropriate
- Al for resilience and security
 - Preventive response to failures
 - Cyber-security

THANK YOU!

