

Ergebnisse des IEA SHC Task 32 Solarthermische Anlagen mit fortschrittlicher Speichertechnologie für Niedrigenergiegebäude

W. Streicher, Institut für Wärmtechnik TU Graz

Subtask A:

Erhebung, Analyse und Verbreitung des Standes der Technik im Bereich fortschrittlicher Wärmespeicher, Erstellung von Randbedingungen für den Vergleich der unterschiedlichen Speicher

Ergebnis:

- Task 32 Handbook, Thermal energy storage for solar and low energy buildings
- Randbedingungen für den Vergleich verschiedener Speichertechnologien Leitung: Schweiz, Jean Christohe Hadorn, Ende: 31. Dezember 2007

Subtask B: Chemische Speicher und Sorptionsspeicher:

Ergebnis:

Theoretische Analyse von geeigneten Sorptions Materialien Prototypen von Erfolg versprechenden Speicherkonzepten Simulationsmodule für Speicherkonzepte, Jahressimulationen innerhalb der Randbedingungen aus Subtask A Leitung Schweden, SERC, Chris Bales, Ende 31. Dezember 2007

Subtask C:

Wärmespeicher mit Phasenwechselmaterialen (PCM –Speicher)

Ergebnis:

Analyse von bekannten PCM Materialien

Prototypen von Erfolg versprechenden Speicherkonzepten

Simulationsmodule für Speicherkonzepte, Jahressimulationen innerhalb der

Randbedingungen aus Subtask A

Leitung: Österreich, IWT, Wolfgang Streicher, Ende: 31. Dezember 2007

Subtask D:

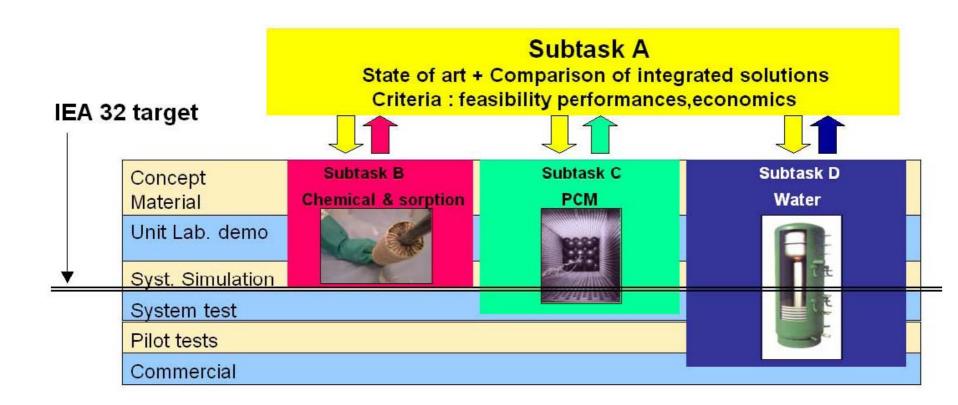
Fortschrittliche Warmwasserspeicher und Ihre Komponenten

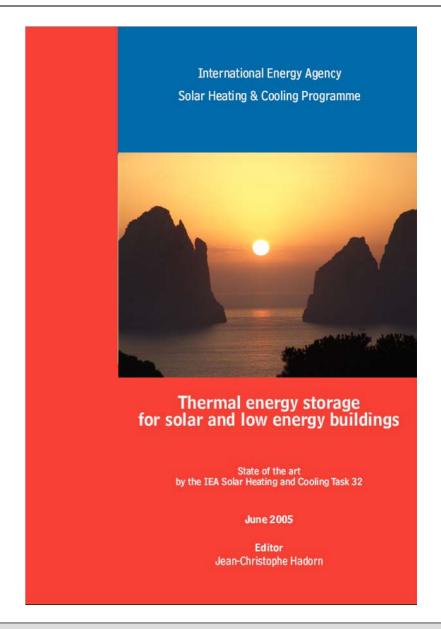
Ergebnis:

Prototypen von Erfolg versprechenden Speicherkonzepten, Verbesserung von vorhandenen Konzepten.

Leitung: Deutschland, ITW, Harald Drück, Ende: 31. Dezember 2007

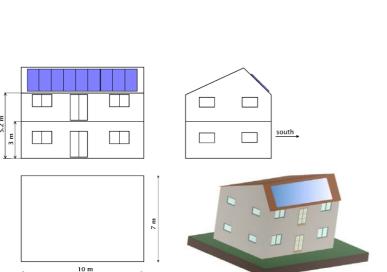
Teilnehmende Länder und Organisationen:

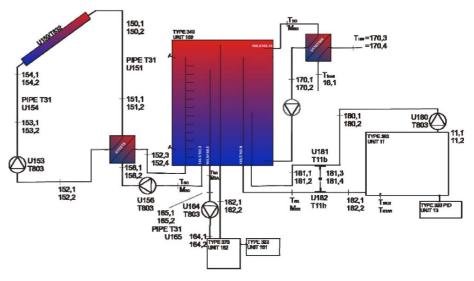

Dänemark, DTU
Frankreich, ASDER, EDF
Deutschland, ITW, ZAE Bayern, ISE, Universität Kassel, Schüco
International
Niederlande, Entry Technologies, ECN
Österreich, IWT, AEE Intec
Spanien, Universitat de Lleida
Schweden, SERC
Schweiz, Bundesamt für Energie, HEIG-VD LESBAT, SPF, EMPA

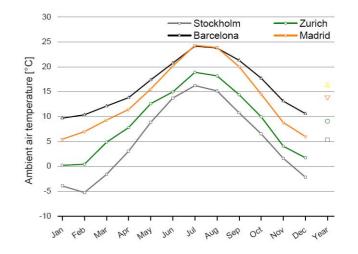


Subtask A: Resultate

Handbook

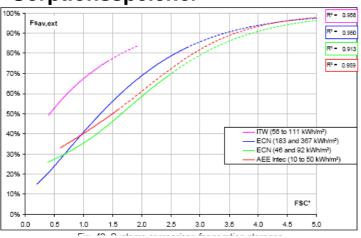


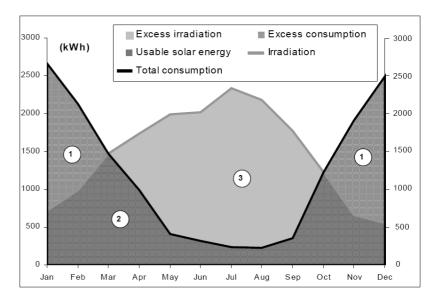




Subtask A: Resultate

 Referenzsystem für den Vergleich





Subtask A: Resultate

Vergleichsmethode =
 weiterentwickelte
 FSC-Methode des IEA SHC
 Task 26

 Methode angewandt für Sorptionsspeicher

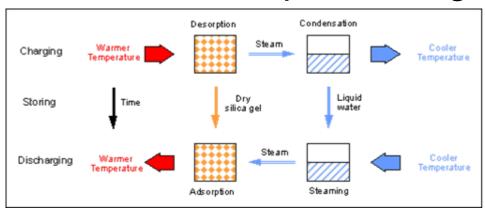
FSC =
$$\frac{[(2)]}{[(1)+(2)]}$$
 $\frac{\left[\sum_{1}^{12} Q_{\text{solar,excess}}\right]}{\left[\sum_{1}^{12} E_{\text{ref,month}}\right]} = \frac{[(3)]}{[(1)+(2)]}$

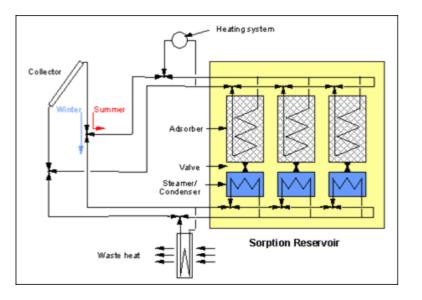
$$ENC = \frac{\left[\sum_{1}^{12} E_{\text{ref, month}}\right]}{Q_{\text{store, cap}}} \qquad FSC' = FSC + \frac{1}{ENC^{\alpha}} \frac{\left[\sum_{1}^{12} Q_{\text{solar, excess}}\right]}{\left[\sum_{1}^{12} E_{\text{ref, month}}\right]}$$

Subtask B: Speicherkonzepte basierend auf Sorptionsmaterialien

Aktivitäten:

- Auswahl geeigneter Materialien,
- Entwicklung von Speicher Prototypen
- Optimierung von Systemen basierend auf dem Referenzsystem von Subtask A





Subtask B:

Chemische Speicherung und Sorptionsspeicher

Ausnutzung der Bindungsenergie von Wasser an porösen Medien (z.B. SilikaGel) Langzeitspeicher Beim Entladen wird Wasserdampf benötigt (Erzeugung?)

Beim Entladen wird der Speicher warm: Es wird

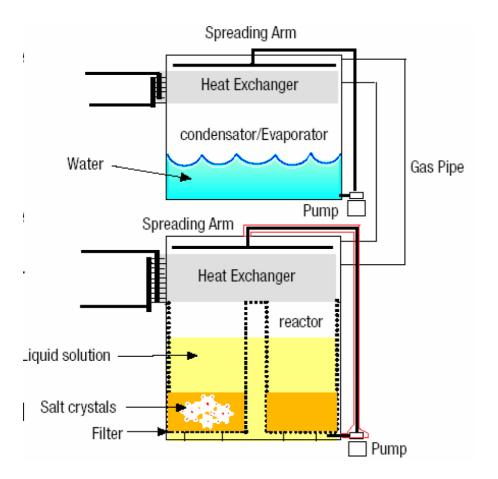
Kondensationswärme und (etwas) chemische Bindungsenergie genutzt

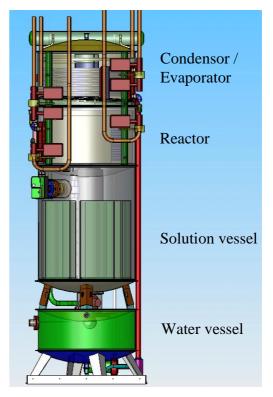
Zum Austreiben des Wassers im Sommer wird Wärme benötigt.

Chemische Speicherung und Sorptionsspeicher Forschungsexpertise in Europa (IEA SHC Task 32)

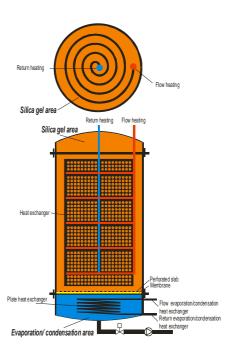
Table 1 Summary of prototype storage units studied in Subtask B.

Type of Technology	Material	Stage of Development	Investigating Institute
Closed three phase absorption (TCA)	LiCl-water + vapour	Nearly commericial	Solar Energy Research Center SERC, Sweden
Closed two phase absorption	NaOH- water	Lab prototype	EMPA, Switzerland
Closed adsorption	Zeolite- water	Lab prototype	SPF, Switzerland
Closed adsorption	Silicagel- water	Field installation(Nearly Commercial)	AEE-Intec, Austria
Open adsorption	zeolite-water	Lab prototype	ITW Stuttgart

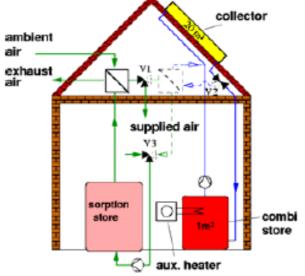


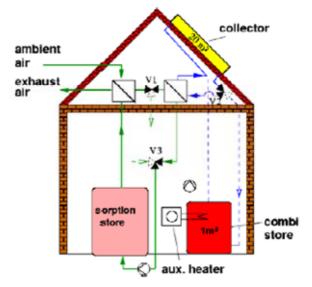


Geschlossener Sorptionsprozess, Thermo-Chemical Accumulator Climate Well, Schweden



Geschlossener Saison Sorptionsspeicher AEE-Intec - Österreich



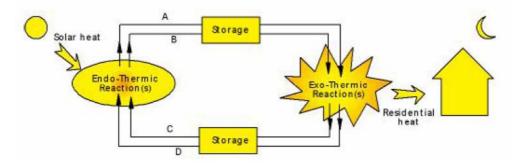


Offener Sorptionsspeicher, ITW Stuttgart

Chemische Speicherung und Sorptionsspeicher

Parameter	TCA 80-100°C	NaOH 95°C test 150°C calculated	Modestore 88°C	SPF 180°C
Type of technology	Closed absorption	Closed absorption	Closed adsorption	Closed adsorption
Cost of material	3600 € /m³	250 € /m³	4300 €/m³	2-3000 € /m³
Storage materials weight:	LiCl salt 54 kg Water117 kg Steel 47 kg	NaOH160 kg Water160 kg	Silica gel 200 kg Water 30 kg Steel 100 kg Copper 50 kg	Zeolite 13X 7 kg
Storage capacity for heat	35 kWh	8.9 kWh	13 kWh	1 kWh
Floor space required for prototype	0.46 m ²	2 m²	0.4 m²	0.3 x 0.3 m ²
Energy density of material (NRJ4.1) (ratio to water 25/85°C)	253 kWh/m ³ (3.6)	250 kWh/m³ (3.6)	50 kWh/m³ (0.71)	180 kWh/m³ (~ 3)
Energy density of prototype - heat (NRJ4.2) (ratio to water 25/85°C)	85 kWh/m³ (1.2)	5 kWh/m ³ (0.07)	33.3 kWh/m ³ (0.48)	57.8 kWh/m³ (~ 1)
Energy density of prototype - cold (ratio to water 7/17°C)	54 kWh/m³ (4.7)	-	-	-
Charge rate	15 kW	1 kW	1-1.5 kW	-
Discharge rate	8 kW	1 kW	0.5 - 1 kW	0.8 kW / 1.8 kW
Estimated size for 70 kWh (ratio to water 25/85°C)	0.64 m ³ (1.6)	1.3 m³ (0.75)	1.7 m³ (0.59)	1.2 m ³ (~ 1)
Estimated size for 1000 kWh (ratio to water 25/85°C)	5.3 m ³ (2.7)	5 m³ (2.9)	23 m ³ (0.62)	17 m³ (~ 1)

Source: IEA SHC Task 32



Ansätze chemische Speicherung

Promising chemical solar storage candidate materials, identified by ECN/UU, The Netherlands (Visscher, 2004).

Material name	Dissociation reaction		energy storage density of C	turnover temperature	realisation potential	
	C <=>	B +	А	GJ/m ³	°C	%
Magnesium sulphate	MgSO ₄ ·7H ₂ O	MgSO ₄	H ₂ O	2,8	122	9,5%
Silicon oxide	SiO ₂	Si	O ₂	37,9	4065 + HF: 150	9.0%
Iron carbonate	FeCO₃	FeO	CO_2	2,6	180	6,3%
Iron hydroxide	Fe(OH) ₂	FeO	H_2O	2,2	150	4,8%
Calcium sulphate	CaSO ₄ ·2H ₂ O	CaSO ₄	H_2O	1,4	89	4,3%

Source: IEA SHC Task 32

Subtask C: Speicherkonzepte mit Phasenwechselmaterialien (PCM)

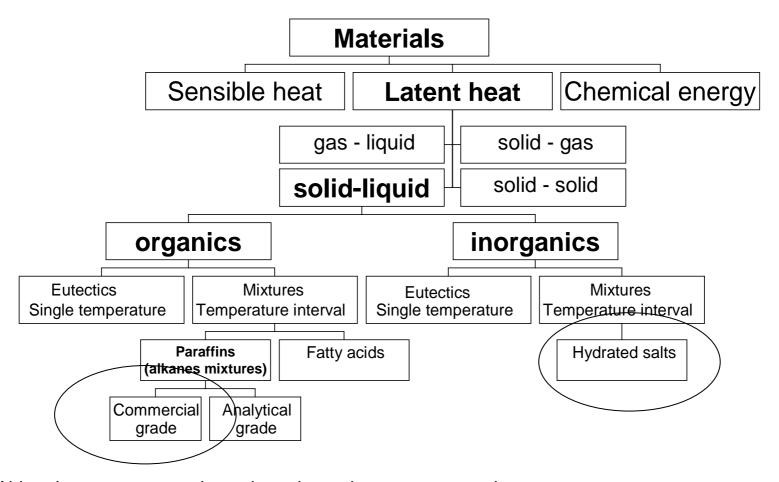
Aktivitäten:

- Auswahl geeigneter Materialien,
- Entwicklung von Speicher Prototypen
- Optimierung von Systemen basierend auf dem Referenzsystem von Subtask A

Table 1.1 Summary of prototype storage units studied in Subtask C.

PCM – Projekte in Europa (IEA SHC Task 32)

Type of Technology	Material	Stage of Development	Investigating Institute
PCM seasonal storage using subcooling	Na(CH ₃ COO)-3 H ₂ O	Lab prototype	Technical University of Denmark (DTI), Denmark
Macroencapsulated PCM in storage tank	Na(CH ₃ COO)-3 H ₂ O + graphite	Lab prototype	University of Lleida, Spain
Macroencapsulated PCM in storage tank with integrated burner	Na(CH ₃ COO)·3 H ₂ O + graphite	Lab prototype	Applied University of West-Switzerland (HEIG-VD), Switzerland
Microencapsluated PCM slurry	Paraffine,	Lab prototypes	Graz University of Technology, (IWT- TUGraz), Austria
Macroencapsulated PCM in storage tank	Paraffine, Na(CH ₃ COO)-3 H ₂ O with/without graphite	Lab prototypes	Graz University of Technology, (IWT- TUGraz), Austria
Immersed heat exchanger in PCM	Na(CH ₃ COO)-3 H ₂ O without graphite	Lab prototypes	Graz University of Technology, (IWT- TUGraz), Austria

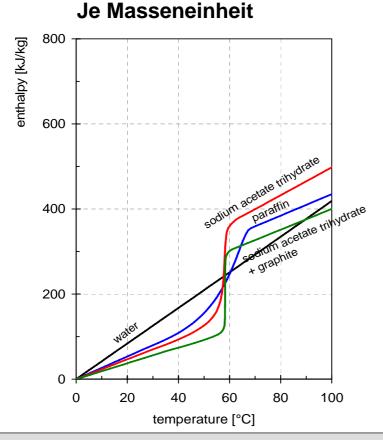


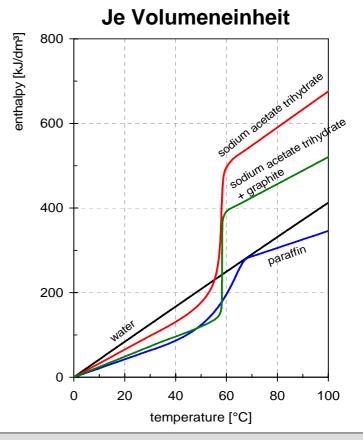
Klassifizierung von PCM Materialien

A. Abhat, Low temperature latent heat thermal energy storage: heat storage materials, Solar Energy 30 (1983), 313–332.

Klassifikation von PCM Materialien

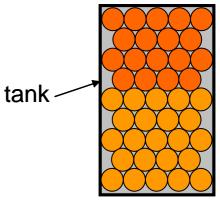
Organische (Paraffine)	Anorganische (Salzhydrate)
<u>Vorteile</u>	<u>Vorteile</u>
Nicht Korrosiv	Höhere Phasenwechselenthalpie
Chemisch and thermisch stabil	Größere Dichte
Keine oder geringe Unterkühlung	
<u>Nachteile</u>	<u>Nachteile</u>
Niedrige	Unterkühlung
Phasenwechselenthalpie	Korrosiv
Geringere Dichte	Phasenentmischung
Geringe Wärmeleitfähigkeit	• Zyklenstabilität ??
Brennbar	

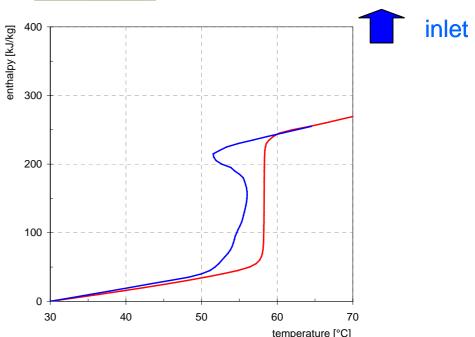




Speicherdichte verschiedener

Phasenwechselmaterialen im Vergleich zu Wasser




Charakteristik von PCM Materialen

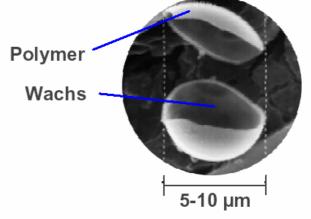
outlet

- PCM ist nicht der Wärmeträger zum Verbraucher (außer PCM slurries)
- Unterkühlung (tritt hauptsächlich bei hydrierten Salzen auf)
- Phasenentmischung (tritt hauptsächlich bei hydrierten Salzen auf)
- Phasenwechsel in einem Temperaturbereich (hauptsächlich bei Paraffinien technischer Reinheit)

Charakteristik von PCM Materialen

Wärmeübergang (Thermische Leistung)

- Problem: geringe Wärmeleitfähigkeit der PCM im festen Zustand * Graphit-Matrix mit PCM oder ander Wärmeleitungsverbesserer
- Wenn die PCMs in Behältern sind kommt zusätzlich der Wärmeübergang von Behälter zu Wasser und PCM dazu
 kleine Behälter mit großer Oberfläche oder Slurries



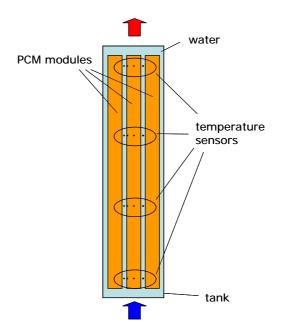
Was ist ein PCM-Slurry?

Microverkapseltes Paraffin

⇒ vermischt mit Wasser

⇒ Pumpbares Fluid

Speicher mit Phasenwechselmaterialien (PCM)

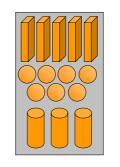


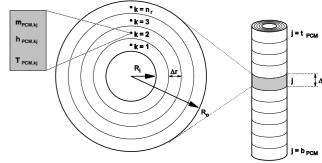
Test und Simulation verschiedener PCM-Optionen Institut für Wärmtechnik

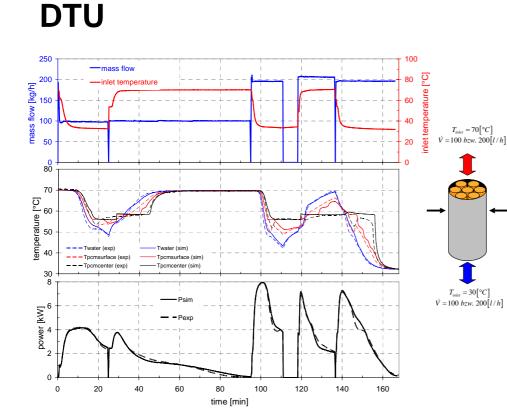
Speicher für mikroverkapselte PCM emiulsion

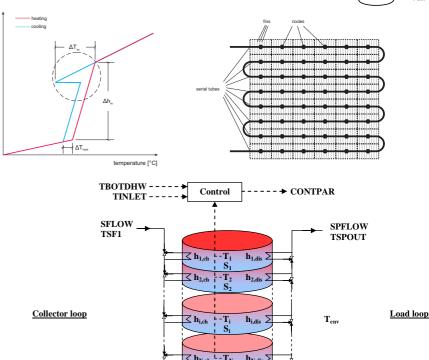
PCM Speicher mit zylindrischenModulen

PCM Speicher mit eingehängten Wärmetauscher





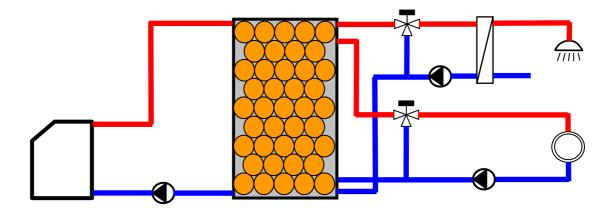

SPFLOW


TRETURN

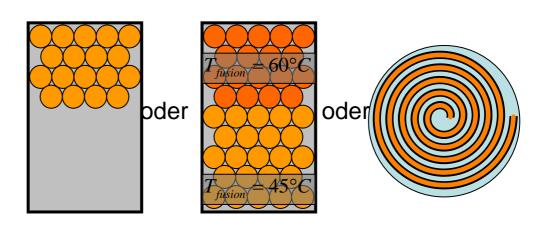
PCM Speichermodellierung TRNSYS Types von HEIG-VD, IWT TU Graz,

SFLOW

TSFOUT



Systemsimulation

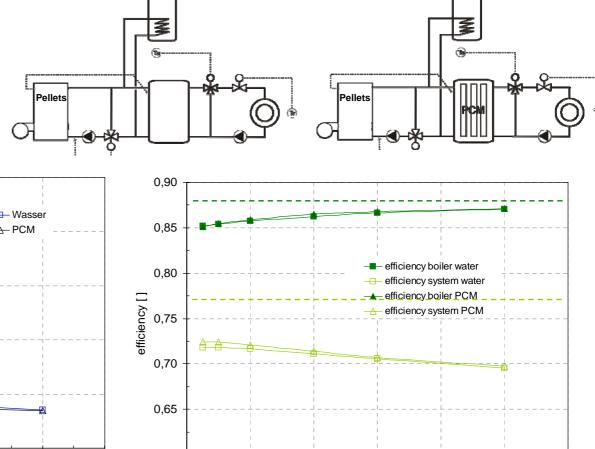

Jahressimulation

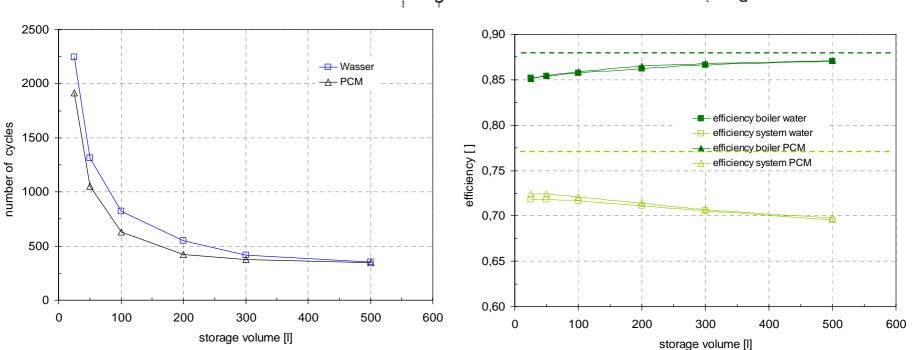
- Trinkwarmwasser
- Heizenergiebedarf
- Hilfsenergie
- Sonnenkollektor

Optimierung der Speicher

- Positiond er PCM Module
- Phasenwechseltemperatur
- Andere PCM Geometrien

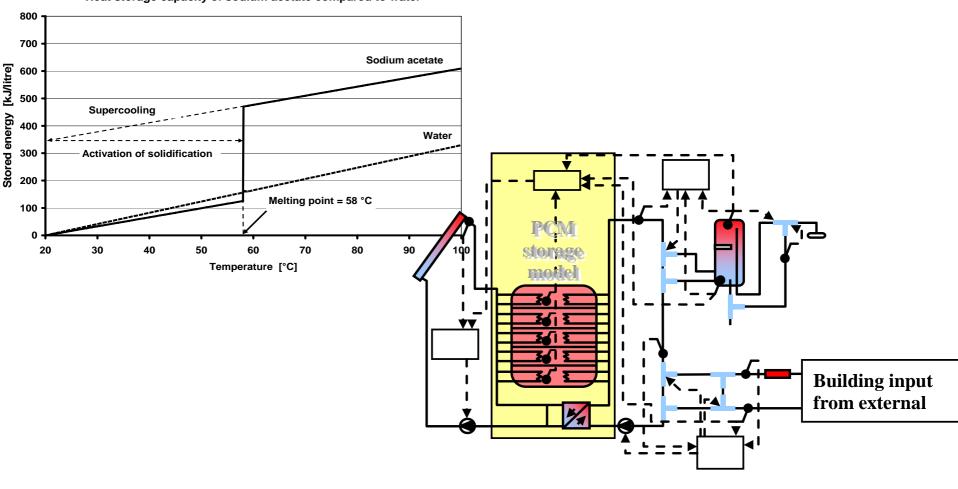
Vergleich von reinem Wasserspeicehr + PCM System. (PCM gain = Fsav,therm(W+PCM)/Fsav,therm(W) – 1), HEIG-VD, Switzerland





Systemsimulationen IWT, TU Graz, Österreich

Pellets Kessel: Anzahl der Startups Jahresnutzungsgrad



Nutzung der Unterkühlung für Jahresspeicherung (DTU, Dänemark)

Heat storage capacity of sodium acetate compared to water

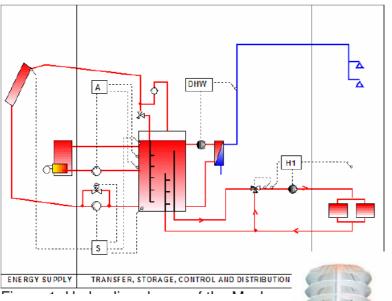
Nutzung der Unterkühlung für Jahresspeicherung (DTU, Denmark)

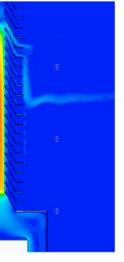
- 100 % solarer Deckungsgrad mit PCM Speichervolumen von 10 m³ für ein 135 m² Nutzungsfläche Passivhaus (15 kWh/m²a Restheizenergiebedarf).
- Wasserspeicher müssen viel größer sein um 100% Deckungsgrad zu erreichen.
- 80 90 % Deckungsgrad können auch mit 10 m³
 Wasserspeicher erreicht werden.
- Hoher technischer Aufwand (viele getrennte Speicher)

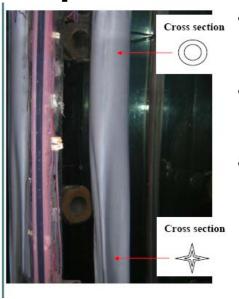
Subtask D: Fortschrittliche Wasserspeicher

Aktivitäten:

- Prototypen von Erfolg versprechenden
 Speicherkonzepten, Verbesserung von vorhandenen
 Konzepten.
- Simulationsergebnisse nach den Randbedingungen von Subtask A






Subtask D: Fortschrittliche Wasserspeicher

Schlussfolgerungen aus IEA SHC Task 32

Generell:

 Werkzeuge zur Evaluierung von PCM- und Sorptionsspeichern im Vergleich zu Wasserspeichern sind vorhanden (Simulationmodule und Vergleichskennzahlen)

PCM –Speicher:

- Mit den derzeitigen Materialien können keine signifikanten Verbesserungengen gegenüber Wasserspeichern in kompletten Systemen über ein ganzes Jahr erzielt werden.
- Gründe dafür liegen in der geringen Verbesserungen der Wärmespeicherkapazität gegenüber Wasser in den benötigten Temperaturbereichenund den Temperaturverlusten durch Wärmeleitung und Wärmeübergang vom PCM zum Wärmeträger.
- Einzig die gezielte Verwendung der Unterkühlung könnte theoretisch einen Langzeit-Wärmespeicher darstellen

Schlussfolgerungen aus IEA SHC Task 32

Sorptions - Speicher:

- Auch für Sorptionsmaterialien sind Wärmespeicher kaum besser als Wasserspeicher (aufgrund der geringen chemischen Bindungsenergie der derzeitigen Materialien)
- Hier könnte die Entwicklung des ITW, das die Feuchte der Abluft zur Entladung nützt, noch Verbesserungen bringen
- Sorptionsmaterialien eignen sich dagegen zum Einsatz in Wärmepumpen

Wasser-Speicher

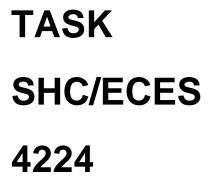
 Wasserspeicher können noch weiter in den Bereichen Schichtungsverhalten, Anschlüsse, Wärmedämmung, Tankmaterielien, Wärmeauscher verbessert werden

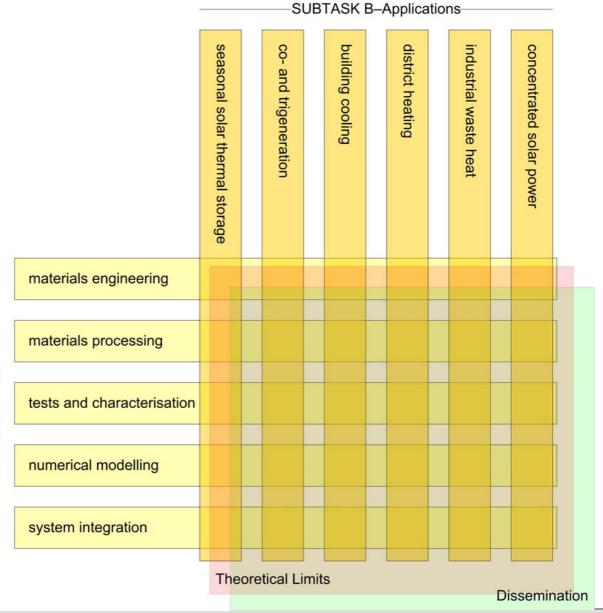
Outlook

- There is a need to find better materials and system solutions for PCM heat stores
- Joint IEA SHC Task and IEA ECES Annex 4224 is starting

Compact Thermal Energy Storage: Material Development for System Integration

Leading organisations ECN, NL Wim van Helden


ZAE, D Andreas Hauer



SUBTASK A-Materials

