

Energiewende gestalten – Transformation, Technologien und Europäische Wertschöpfung Highlights der Energieforschung: Potenziale nutzen & Zukunft gestalten

Juergen Rechberger Vice President Hydrogen & Industrial Energy

AVL List GmbH

The future Energy System Scenario Austria 2050

Net Zero Scenario for Austria 2050

All values in TW	h			ŕ 2
Mobility	Passenger Cars	47,1	11,6	1,6
	Truck Light Truck Heavy	6,8 23,5 16,7	2,8 9,0 6,1	0,4 8,2 8,6
	Transit/Export Other Mobility	22,9 15,2	6,2 2,2	5,6 12,4
	Total Mobility	108,8	29,0 (Total: 32,8)	28,2
Buildings	Gas Oil	15,4 10,9 26,3	7,2 (Total: 20,5)	
Industry, Service Agriculture	Gas Oil Coal	36,9 8,5 78,2 32,8	25,8 (Total: 67,8)	39,0
Total	T	213,3*	62,0 (Total: 121,1)	67,2
		Status 2019	Replaced with electrici	tv & hvdroge

Austrian Electricity Scenario 2050 – Conclusions

- The overall electricity demand for Austria will increase by ~125% till 2050 if full decarbonization in all sectors is achieved
- In total, Austria will face an energy deficit on balance of about 35 TWh, excluding excess electricity this deficit increases to 44 TWh
- This energy deficit is mainly concentrated in the **winter months**
- The potential of excess electricity is in the range of 9 TWh, but concentrated only over 2000 hrs
- The total hydrogen demand for Austria for end use is estimated to be 67 TWh
- A significant amount of hydrogen needs to be imported, as local production of the full demand is unrealistic
- If the renewable electricity gap is partly closed by hydrogen power plants, the total hydrogen demand will increase up to 100 TWh

Hydrogen and Hydrogen derivates will play a key role in decarbonization to supplement and close the gaps of renewable electricity in Mobility, Industry & Energy

Transformation

E-Mobility

We are relentlessly striving towards climate-neutral mobility. Not just by increasing the efficiency of multiple propulsion systems, but also by pioneering energy from green resources.

900+

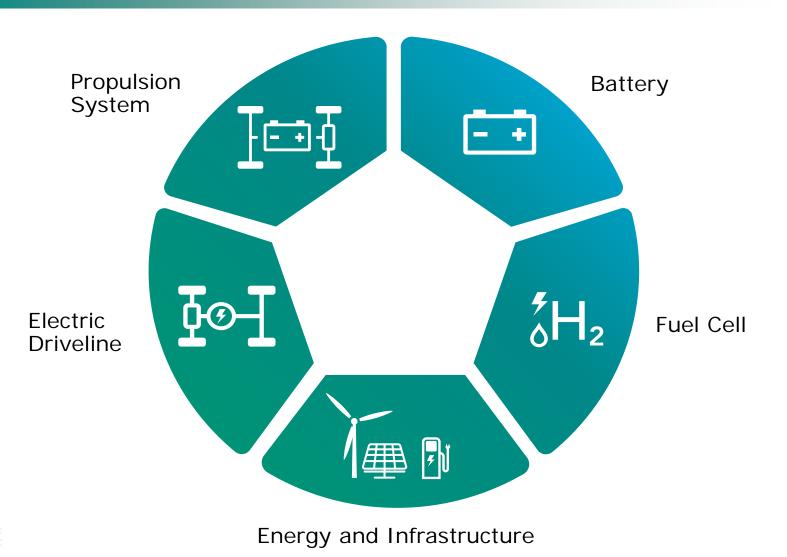
Executed

Battery

Projects

300+

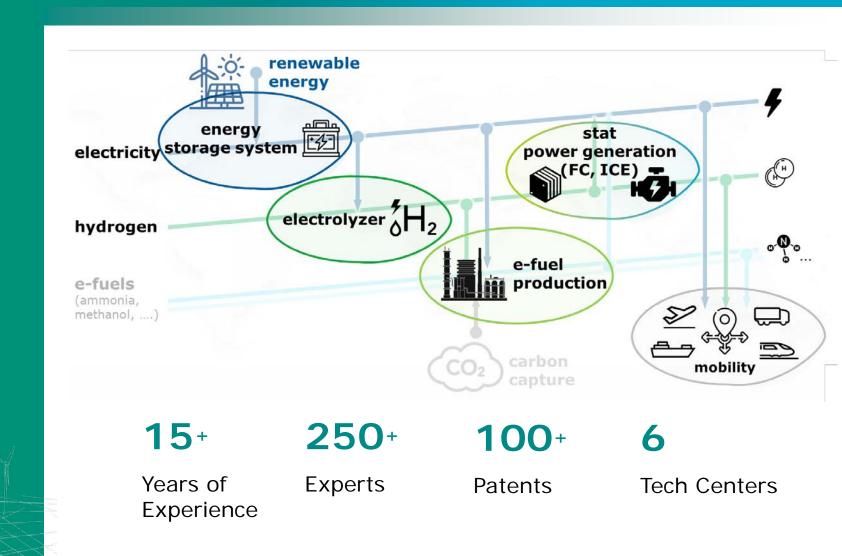
Executed Fuel Cell


Projects

Redrawing the Lines of Electrification

E-Mobility

From battery to fuel cell technologies, we are paving the way for e-mobility by driving innovative and affordable solutions.



Reimagining Energy

Energy

Energy conversion & storage technologies for a future renewable energy system

Passion for Innovation

Together with an international network of experts and with 45 Tech and Engineering Centers worldwide, we drive sustainable mobility trends for a greener future.

Styrian Innovation Award 2021 in the category of "Sustainability".

10 %

Of Turnover Invested in Inhouse R&D

100+

University Cooperations

2,200

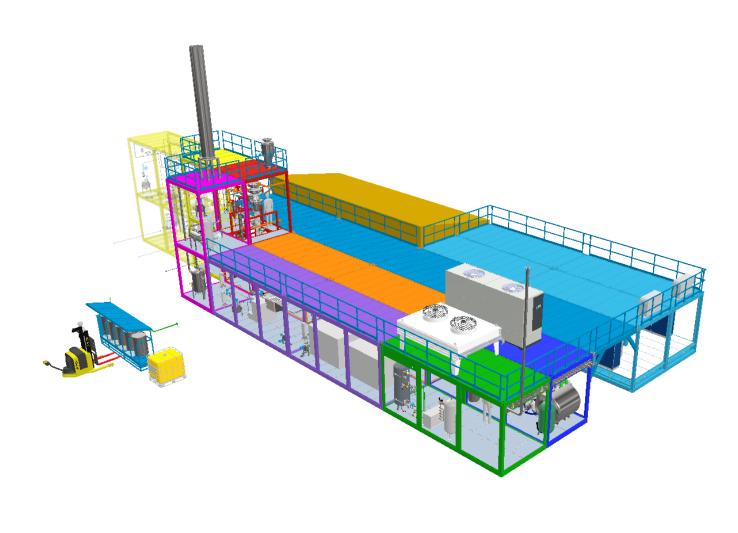
Granted Patents in Force

150+

Projects within European Programs for RTD

Next Generation Electrolyzer Technologies

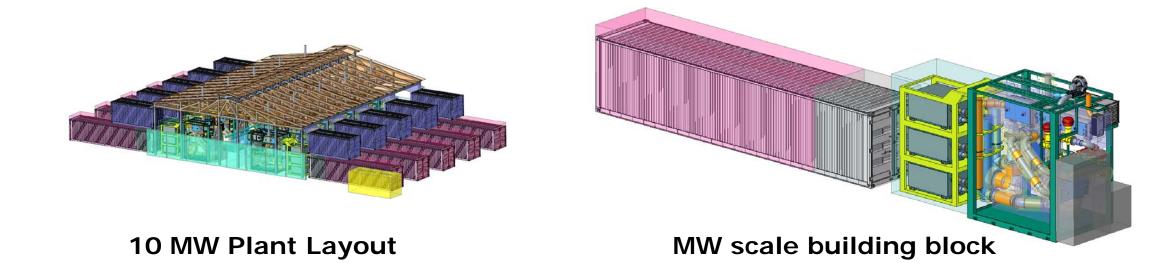
NEWS


Ceres and Shell sign agreement for green hydrogen 28 June 2022

- Megawatt scale demonstrator to be located in Bangalore, India
- Aim to deliver low-cost green hydrogen for industrial decarbonisation
- 1MW Solid Oxide Electrolysis System
- Size: 40ft Container
- Steam electrolysis
- Efficiency:
 - ~87% demonstrated on SOEC module level!
- Tests and commissioning @AVL Schrick ongoing

SOEC will be the technology of choice in industrial hydrogen and e-fuel production

SOEC Power-to-Liquid Demonstration Plant


- 200kWel SOEC capacity
- ~100.000l production capacity of efuels per year
- Focus: Diesel and SAF (sustainable aviation fuels)
- ~400t/year CO₂ use
- >30% Efficiency Improvement in efuel production

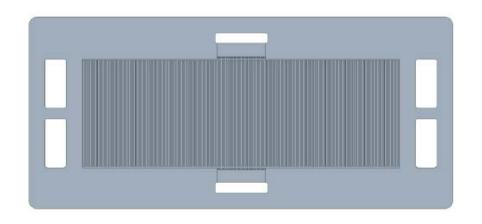
Industrialization of SOEC – AVL IPCEI Initiative

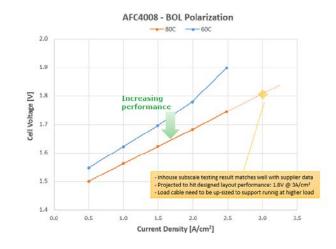
European Commission Hydrogen IPCEI initiative

H2 PEM Fuel Cell Power Generation for Data Centres

250 kW demonstrator modul

500 kW A-Sample


- Using multiple automotive fuel cell systems and components
- AVL Powerplant design, build and testing of complete hardware and controls
- Approved by authorities
- Black-start capability
- Status:
 - 500 kW demonstrator deployed at data center (03/2023)
 - 500 kW product under development (KoM 08/2023)
 - 3 MW deployment in preparation


AVL PEM Electrolyzer Stack Platform

Property	Unit	Target	AVL Electrolyzer Stack (BoL)
Efficiency	kWh/kg H ₂	≤ 51	~47 incl. electrochem. compression to 20bar
Efficiency	% _{LHV}	≥ 65	~71 incl. electrochem. compression to 20bar
Operation mode	-	Differential	Differential
Operating pressure	bar(a)	30	30

AVL Electrolyzer stack platform will be demonstrated with a short stack by end of 2024

AVL Electrolyzer stack platform could be a starting point for customer-specific electrolyzer stack design

Europäische Wertschöpfung

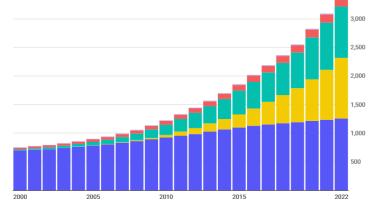
PROTECTONISTIC

IRA Protecting Industry Driven by Visions Risking industrial value creation & competitiveness PRAGMATIC

Having already protected strategic resources

EU squeezed between two strong poles

Renewable Energy



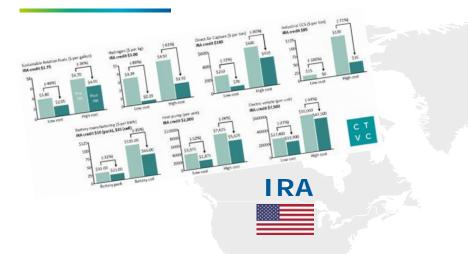
33GW PV in 2023 6GW Wind in 2023

Installed Renewable Capacity Worldwide by Technology (GW)

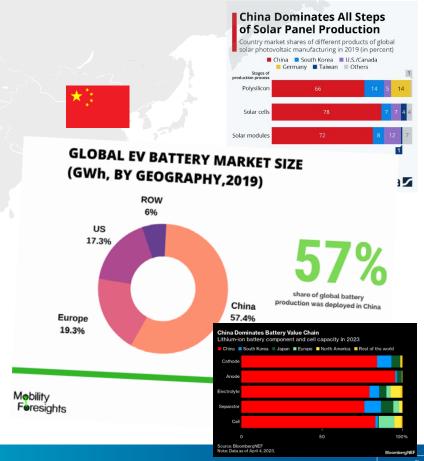
📕 Renewable hydropower 📕 Solar 📕 Wind 📕 Bioenergy 📓 Geothermal 📗 Marine

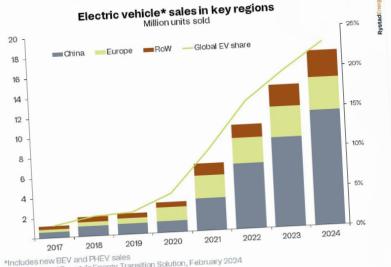
56GW PV in 2023 18GW PV in 2023

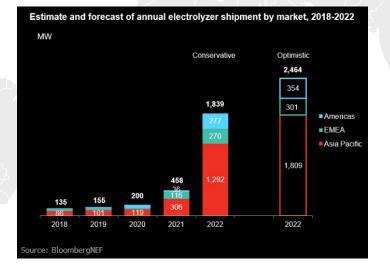
RED


Installation targets in the Five year plan

217GW PV in 2023 90GW PV in 2023


Strong growth in PV – stagnation in wind


Green-Tech Production



- Battery materials
- Battery production
- Photovoltaic
- EV production
- Electrolyzer production
- Fuel cell vehicle production

*Includes new BEV and PHEV sales Source: Rystad Energy's Energy Transition Solution, February 2024 A Rystad Energy graphic

NZIA

What should we do?

- Top priority needs to be given to <u>fast</u> local build-up of renewable energy (wind, solar, hydro)
- Hydrogen demand and implementation will be driven largely by industry
- For competitiveness of our energy-intensive industry, priority should be given to pipeline import from North/South Europe and Northern Africa
- The energy transition is except PV & solar in geographically preferred region not a business case (yet), therefore progress is slow
- Energy transformation will require commitment, crossindustry collaboration, stable political frameworks, a levelized playing field with fossil energy <u>and time</u>.
- Europe needs to become better in balancing climate objectives with industrial competitiveness (NZIA, CBAM,...)

Thank you

www.avl.com