#farm4more

Climate Action | Green Feed | Biorefinery

Michael Mandl, Bernhard Wich tbw research GesmbH

A. Steinwidder, M. Winter, G. Terler, R. Resch, M. Kropsch HBLFA Raumberg- Gumpenstein

WHAT YOU CAN EXPECT...

- Project Team
- Project scope and objectives
- Biochar and Green Biorefinery technology
- Biorefinery products characteristics
- Feeding tests and preliminary results
- Outlook

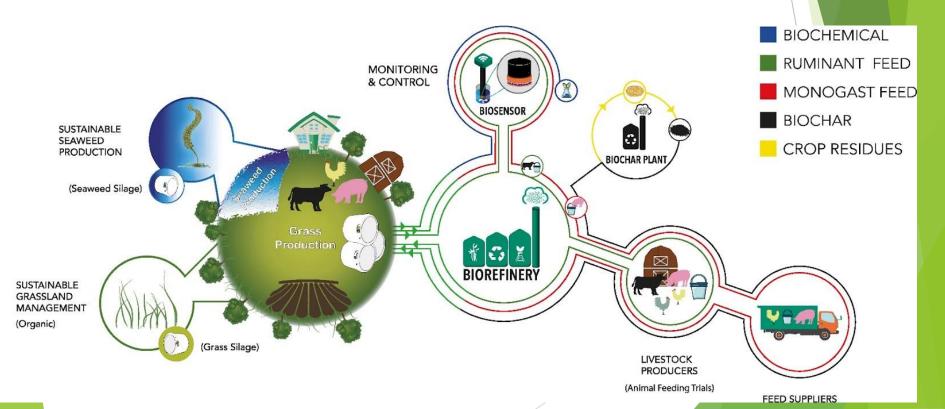
FARM4MORE CONSORTIUM

In total 6 partners from Ireland and Austria

HBLFA Raumberg-Gumpenstein Landwirtschaft

biochar Nergy

Fundings from

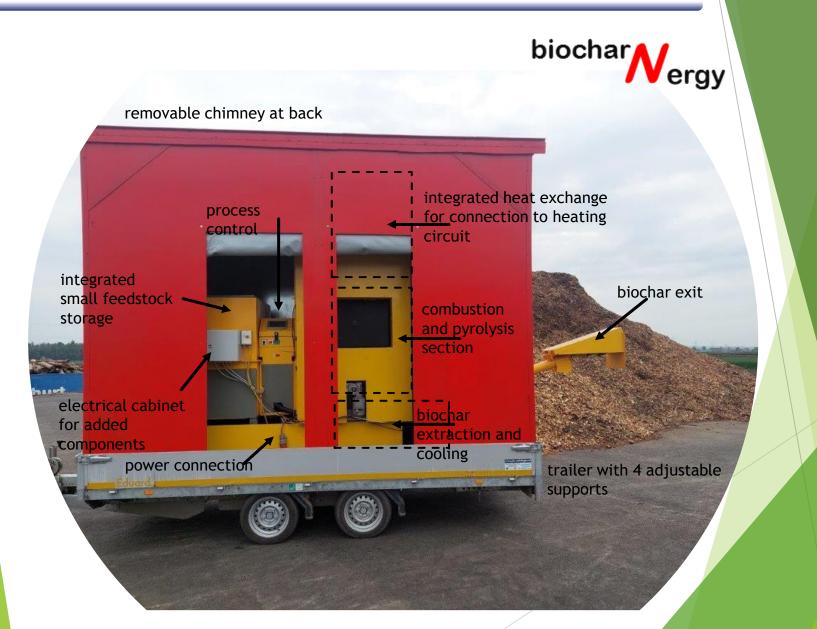


An Roinn Comhshaoil, Aeráide agus Cumarsáide Department of the Environment, Climate and Communications

PROJECT SCOPE

- Demonstration of a Green Biorefinery process for organic feeds: ruminates (cattle) & monogastric (chicken, pigs..)
- Demonstration of a small scale Biochar process to deliver high quality biochar suitable as feed additive
- Impact Assessment of value chain (LCA, technical& economical& environmental assessment)
- Prepare implementation define scenarios stakeholder interaction

PROJECT OBJECTIVES


- Key objective Delivering on climate mitigation impacts in farming by demonstration new feed strategies
 - implementing products from green biorefining and biochar
 - grass press cake as dairy feed
 - protein/ polypeptides/ amino acids concentrates for chicken and pigs feed products
 - biochar as feed additive
 - Perform feed test with "new feeds" to evaluate performance
 - To deliver on reduced emissions (GHG, ammonia and phosphor) in farming/dairy farming/animal production
 - Provide strategies and scenarios for implementation
 - Dissemination and stakeholder involvement

SMALL SCALE BIOCHAR PROTOTYPE

- Biochar prototype has app.100 KW thm output
- Feedstocks: wood ships/pellets and husks
- Biochar quality is highly dependent on process parameters
- Mobile prototype
- Status of Implementation Prototype in commissioning phase
 EBC - European Biochar Certificate audit in progress
- Commercialisation Strategy
 Numbering up by offering low-cost implementation

SMALL SCALE BIOCHAR PROTOTYPE

GREEN BIOREFINERY

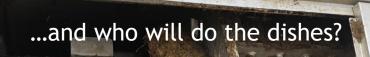
- Demonstration of a green biorefinery for organic certified feed products
 - Raw materials: grass/clover/legumes mixtures
 - Process steps
 - High quality silage making
 - ▶ Extraction process/ pressing: \rightarrow juice & pulp (solids)
 - Juice processing to accomplish feed properties, evaporation to concentrate (60-65%dm) for monogastric feed applications
 - Grass pulp conservation (ensiling, drying)
 - Alternative use of pulp for biogas process
 - Products
 - Hydrolysed protein (PPs/AAs) concentrates as alternative Protein
 - Grass press cake for feed (direct use/silage/ dried & pelletised

GREEN BIOREFINERY IMPLEMENTATION

Implementation of green biorefinery is executed in 2 phases

1st phase: small scale mobile pilot (1000kg/h) to generate prototype products for feed tests

2nd phase: full scale green biorefinery to process 10.000 t/a organic feedstocks located in Japons


GREEN BIOREFINERY PROTOTYPING

July 2021 - GBR campaigning at HBLFA Raumberg - Gumpenstein

GREEN BIOREFINING CAMPAIGN AT HBLFA - RAUMBERG - GUMPENSTEIN

EVAPORATION TRAILS AT DIFFERENT SCALES

- Industrial scale: 3-effect fall film evaporator
- Pilot scale- on site evaporation

PROTOTYPE - NEW CHICKEN FEEDS

Mixing 14 % AA-concentrate into 3 tons of pre-mixed feed, homogeneously!

 Final feed pellet including AA concentrates

OVERVIEW FEEDING TESTS

- Biochar as feed additive for ruminates and chicken to evaluate
 - reduction of methane emission in cattle breeding,
 - reduction of ammonia emission in chicken fattening.
- Characterisation/ feed value of press cake and CP/AA concentrates
- Storability / Re-ensiling of press cake
- Grass silage press cake as ruminates feed (dairy cows, organic)
- CP/AA concentrates integrated in chicken feed
- Feeding test nearly finished, but data not yet complete analyzed

Re-ENSILING

Re-ensiling of **silage press-cakes after extraction** small scale (60L) and round bales scale (app 800-1000kg)

RE-ENSILING	silage absolut (benchmark)			re-ensiled presscake absolut			re-ensiled presscake relative difference to benchmark [%]					
Re-ensiling of	parameter	abbrev.	unit	grass (pre trial)	grass/clover	red dover	grass (pre trial)	grass/clover	red dover	grass (pre trial)	grass/clover	red dover
5	Dry matter	DM	g/kg FM	419.6 ^c	316.3 ^B	249.4 ^A	372.0ª	369.2"	- 372.3ª	88.7ª	116.9 ^b	149.3 ^c
silage press-cake	nutrients		0, 0									
• 1	Crude protein	XP	g/kg DM	135.1 ^A	145.8 ^A	158.8 ⁸	101.7ª	116.2 ^b	126.0 ^c	75.4ª	79.7ª	79.5 ^a
works well	Ammonia	NH_4	g/kg DM	1.8 ^A	2.3 ^{AB}	2.7 ⁸	1.2ª	1.3ª	1.2ª	67.0 ^b	54.5 ^{ab}	47.1 ^a
without additives	NH ₄ of N _{total}		%	8.3 ^A	9.8 ^A	10.3 ⁸	7.3 ^b	6.7 ^{ab}	6.0 ^a	87.9 ^b	68.3 ^a	59.8ª
	Neutral detergent fiber	NDF	g/kg DM	496.3 ^C	390.2 ^B	342.8 ^A	634.5 ^c	492.5 ^b	440.0 ^a	127.9 ^a	126.2ª	128.5 ^a
needed if done	Acid detergent fiber	ADF	g/kg DM	336.3 ^C	294.9 ^A	309.0 ^{AB}	433.7ª	402.8ª	411.8ª	129.2ª	136.8ª	133.4ª
properly and within	Acid detergent lignin	ADL	g/kg DM	41.0 ^A	32.9 ^A	39.3 ^A	49.3 ^b	40.5 ^a	47.6 ^b	122.5ª	123.3ª	121.5 ^ª
properly and within	Non fibre carbohydrates	NFC	g/kg DM	198.8 ^A	280.6 ^B	279.6 ^B	102.3ª	184.0 ^b	228.8 ^b	51.4ª	65.7 ^b	82.0 ^c
1 day	Sugar	XZ	g/kg DM		86.7 ⁸	40.4 ^A		6.5ª	5.5ª		7.6 ^a	13.7 ^b
	Crude fiber	XF	g/kg DM	292.3 ⁸	236.1 ^A	229.8 ^A	374.2 ^b	300.4ª	288.6ª	128.4ª		125.9 ^a
	Crude fat	XL	g/kg DM	21.6 ⁸	17.5 ^A	22.3 ⁸	22.0 ^a	28.1 ^b	27.1 ^b	101.7 ^a	160.5 ^c	121.6 ^b
	Crude ash	XA	g/kg DM	87.1 ^A	106.7 ^B	110.7 ^c	63.0ª	81.2 ^b	884.4 ^b	72.4 ^a	76.2ª	76.2 ^a
	minerals				-							
	Calcium	Ca	g/kg DM	8.4 ^A	12.3 ^B	14.5 ^C	6.3ª	10.2 ^b	12.3 ^c	75.1ª	82.9 ^b	84.8 ^b
	Phosphorus	Р	g/kg DM	3.08 ^A	3.02 ^A	3.03 ^A	1.8 ^a	1.5 ^a	1.5ª	58.6ª	50.5ª	50.0 ^a
	Magnesia	Mg	g/kg DM	1.9 ^A	2.3 ^B	2.8 ^c	1.3ª	1.5ª	1.9 ^b	66.9ª	66.0ª	66.8ª
	Potassium	К	g/kg DM	28.1 ^A	30.2 ^{AB}	31.7 ⁸	13.4ª	17.2 ^b	18.1 ^b	48.6ª	58.2ª	58.8ª
	Sodium	Na	mg/kg DM	129 ^A	93 ^A	105 ^A	135ª	172 ^a	138ª	110.0 ^a	193.9ª	143.1ª
	Iron	Fe	mg/kg DM	900 ⁸	447 ^A	519 ^A	1087 ^a	676 ^a	743 ^a	121.7ª	152.1ª	143.4ª
	Mangan	Mn	mg/kg DM	76.6 ⁸	50.8 ^A	44.7 ⁴	60.1 ^b	40.7ª	37.5ª	83.8ª	80.3ª	79.0 ^a
	Zinc	Zn	mg/kg DM	24.1 ^A	25.7 ^A	28.1 ^B	96.9 ^b	19.2 ^a	21.0 ^a	403 ^b	74.7ª	75.0 ^a
	Copper	Cu	mg/kg DM	6.2 ^A	6.9 ⁸	8.6 ^C	6.5ª	6.9 ^a	8.8 ^b	104.8 ^a	99.7ª	102.1ª
	fermentation									ab		
	pH			4.68 ^A	4.75 ^A	4.58 ^A	4.16 ^b	4.10 ^a	4.22 ^c	88.9 ^{ab}	86.2ª	92.1 ^b
	Lactic acid	La	g/kg DM	35.8 ^A	36.5 ^A	56.9 ⁸	57.1ª	75.3 ^b	71.3 ^{ab}	170.1ª		126.2ª
	Acetic acid	Aa	g/kg DM	11.0 ^A	11.4 ^A	14.2 ⁸	11.9ª	14.0°	13.4°	108.8**	123.3°	94.5°
	Propionic acid	Pa	g/kg DM	1.5 ^{AB}	1.5 ^A	2.1 ^B	0.84 ^a	0.95 ^a	0.96 ^a	56.7ª	61.8 ^a	46.0 ^a

g/kg DM

g/kg DM

g/kg DM 61.2^A

Ва

Eth

voc

2.2^A

10.7^A

3.5^A

6.1^A

59.1^B

6.0^B

6.7^A

85.9^C

1.6ª

2.9^b

5.1^a 4.9^a

76.5^a 93.7^b

3.9^b 70.9^a 81.6^a

4.2^a 58.3^a 80.1^a

98.0^b 134.4^a 167.5^a 109.4^a

65.4ª

63.0ª

Butyric acid

Volatile organic compounds

Ethanol

Reference: R. Resch et al, proceedings, 76. ALVA-Tagung, 30.-31.5.2022, Graz

PRESS JUICE

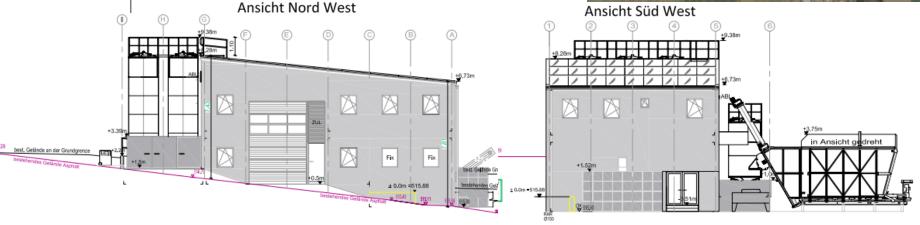
composition of raw silage press juice

Juice is further polished for feed application

grass (pre trial) grass (pre trial) grass (pre trial) grass (pre trial) grass (over grass (cover	
ಹ ಹಿ ೭ ಹಾ ಹಿ ೭ Dry matter DM g/kg FM 419.6 ^C 316.3 ^B 249.4 ^A <mark>102.0³ 114.8³ 123.3</mark>	
nutrients	
Crude protein XP g/kg DM 135.1 ^A 145.8 ^A 158.8 ^B 235.9 ^b 230.9 ^a 208.3	
Ammonia NH ₄ g/kg DM 1.8 ^A 2.3 ^{AB} 2.7 ^B 4.9 ^a 5.9 ^b 6.3 ^b	273.0° 253.6° 240.7°
NH ₄ of N _{total} % 8.3 ^A 9.8 ^A 10.3 ^B 12.4 ^a 17.2 ^b 17.9 ^b	150.1ª 176.8ª 178.3ª
Neutral detergent fiber NDF g/kg DM 496.3 ^C 390.2 ^B 342.8 ^A	
Acid detergent fiber ADF g/kg DM 336.3 ^C 294.9 ^A 309.0 ^{AB}	
Acid detergent lignin ADL g/kg DM 41.0 ^A 32.9 ^A 39.3 ^A	
Non fibre carbohydrates NFC g/kg DM 198.8 ^A 280.6 ^B 279.6 ^B 416.9 ^a 479.3 ^b 414.0 ^a	
Sugar XZ g/kg DM 86.7 ⁸ 40.4 ^A 42.4 ^b 17.6 ^a	49.0 ^b 44.5 ^a
Crude fiber XF g/kg DM 292.3 ⁸ 236.1 ^A 229.8 ^A	
Crude fat XL g/kg DM 21.6 ^B 17.5 ^A 22.3 ^B	
Crude ash XA g/kg DM 87.1 ^A 106.7 ^B 110.7 ^C 184.4 ^a 183.7 ^a 185.9 ^c	211.7° 172.3 ^b 167.9 ^b
minerals	
Calcium Ca g/kg DM 8.4 ^A 12.3 ^B 14.5 ^C 14.2 ^a 16.6 ^b 18.3 ^c	
Phosphorus P g/kg DM 3.08 ^A 3.02 ^A 3.03 ^A 8.3 ^b 6.6 ^a 6.3 ^a	269.7 ^b 218.8 ^a 209.8 ^a
Magnesia Mg g/kg DM 1.9 ^A 2.3 ^B 2.8 ^C 4.3 ^a 4.4 ^a 4.9 ^b	227.9 ^b 189.5 ^a 175.8 ^a
Potassium K g/kg DM 28.1 ^A 30.2 ^{AB} 31.7 ^B 64.1 ^b 53.2 ^a 52.9 ^a	
Sodium Na mg/kg DM 129 ^A 93 ^A 105 ^A 493 ^a 550 ^a 439 ^a	399.4ª 473.0ª 643.8ª
Iron Fe mg/kg DM 900 ⁸ 447 ^A 519 ^A 2234 ^b 840 ^a 911 ^a	
Mangan Mn mg/kg DM 76.6 ⁸ 50.8 ^A 44.7 ^A 150.8 ^c 84.9 ^b 68.6 ^c	
Zinc Zn mg/kg DM 24.1 ^A 25.7 ^A 28.1 ^B 55.5 ³ 70.9 ³ 66.7	
Copper Cu mg/kg DM 6.2 ^A 6.9 ^B 8.6 ^C 5.3 ^a 6.1 ^b 7.1 ^C	84.7 ^a 87.2 ^a 82.4 ^a
fermentation pH 4.68 ^A 4.75 ^A 4.58 ^A 5.00 ^b 4.75 ³ 4.63 ^d	106.9 ^a 99.9 ^a 101.1 ^a
Acetic acid Aa g/kg DM 11.0 ^a 11.4 ^a 14.2 ^s 31.3 ^a 26.9 ^a 31.2 ⁱ Propionic acid Pa g/kg DM 1.5 ^{AB} 1.5 ^A 2.1 ^B 3.7 ^a 4.5 ^a 4.2 ^a	287.5 234.6 221.0 247.6 ^{ab} 291.2 ^b 201.0 ^a
Butyric acid Ba g/kg DM 2.2 ^A 3.5 ^A 6.0 ^B 7.5 ^B 8.6 ^B 14.6 ^D Ethanol Eth g/kg DM 10.7 ^A 6.1 ^A 6.7 ^A 13.8 ^B 11.8 ^B 13.5 ^D	
Volatile organic compounds VOC g/kg DM 61.2 ^A 59.1 ^B 85.9 ^C 162.8 ^{ab} 133.1 ^a 19.7	

silage absolut

raw juice relative


PRELIMINARY RESULTS FROM FEEDING TESTS

- Biochar as feed additive for ruminates/chickens
 - NO reduction of methane emission in cattle breeding;
 - NO reduction of ammonia emission in chicken fattening.
- Grass silage press cake for dairy cows (organic)
- No significant reduction in milk yield investigated when 50% of forage was replaced by press cake; press cake suitable fodder for cattle; long run trails needed.
- CP/AA concentrates integrated in chicken feed ongoing - final results pending;
 - 10% inclusion rate for concentrate in feed mixture
 - daily weight gains similar to reference group.

FULL-SCALE GREEN BIOREFINERY IMPLEMENTATION

- Implementation of full scale green biorefinery is progressing (Gewerberechtliche Genehmigung)
- Cooperation with BioEnergie aus Japons
- Supply chain 10.000 t/a organic silage
- Green biorefinery will be integrated at existing biogas plant Japons to share feedstock supply, utilities and surplus heat

Thank you! More information on Farm4more https://www.farm4more.ie

Michael Mandl tbw research GesmbH Grünberstraße 15, 1120 Vienna, Austria <u>m.mandl@tbwresearch.org</u>; www.tbwresearch.org

This project has received funding from the Executive Agency for Small and Medium Sized Enterprises (EASME) under grant agreement LIFE18 CCM/IE/001195 and from the Department of The Environment, Climate & Communication (DECC). The EASME receives support from the European Union's LIFE Programme.

An Roinn Comhshaoil, Aeráide agus Cumarsáide Department of the Environment, Climate and Communications

