

ANDREAS HAIDER, FÜRST CHRISTIAN

Kompetenzzentrum Holz GmbH

Introduction – key data

KPLUS

Foundation 2000

- Wood K plus was set up to become the leading Austrian research organisation in the areas **wood materials and wood chemistry**
- as a non profit organisation, structured as GmbH (ltd. Company)

Public Owners:

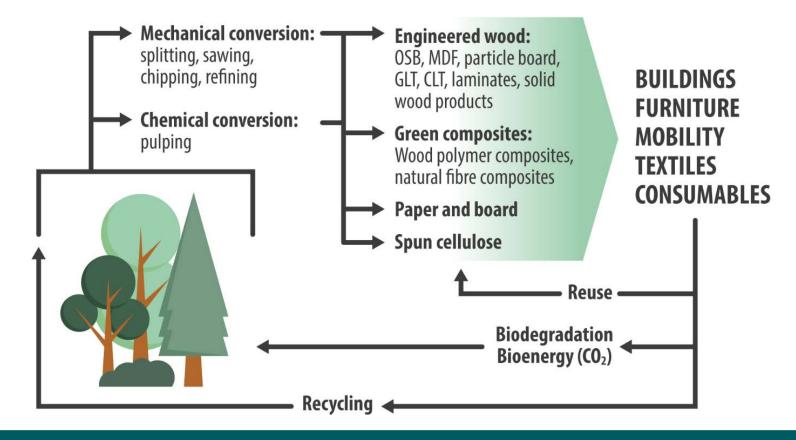
•	Upper Austrian Research GmbH – UAR	48 %
•	State of Carinthia – BABEG	26 %
•	University of Natural Resources and Life Sciences, BOKU	13 %
•	Johannes Kepler University, JKU	13 %

Sites:

• Linz (OÖ), St. Veit (Ktn.), Tulln (NÖ)

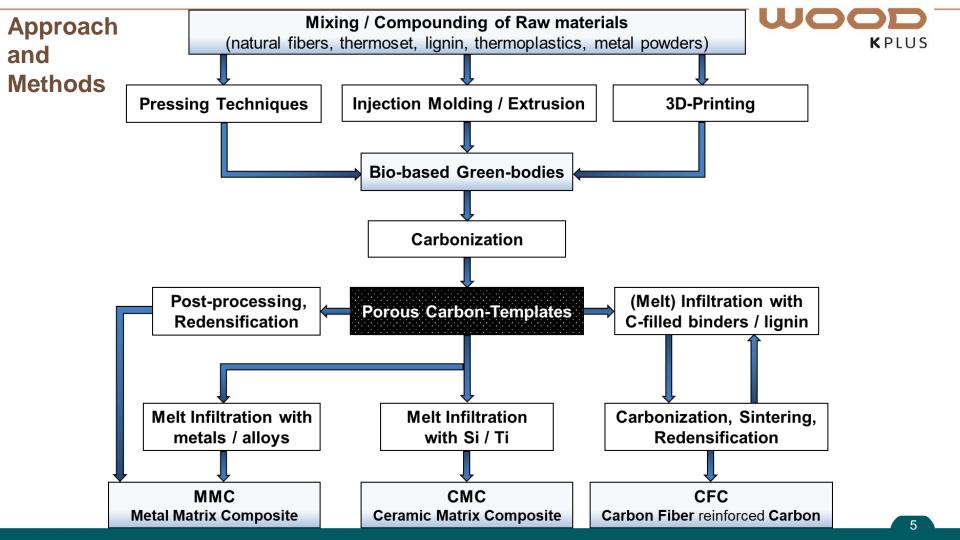
Personnel:

- ca. 125 employees Wood K plus / about 50 % women (!)
- >150 researchers of partner organisations participate in projects of Wood K plus



St. Veit an der Glan

K1 Center 2030: research programme WOOD - Transition to a sustainable bioeconomy


KPLUS

Approach

Development of **bio-based precursors** for **porous carbon pre-forms for** the manufacture of **MMCs**, **CMCs and CFCs**.

- Preparation of green-bodies from novel thermoset-based natural fiber composites (NFCs) using injection molding, 3D-printing, extrusion and pressing techniques.
- Transformation of the NFC green-bodies into porous carbon pre-forms by a subsequent carbonization step.
- Melt infiltration of the porous carbon pre-forms with metals, semi-metals and carbon-rich biobased binders to form MMCs, CMCs and CFCs.
- > Evaluation of the material specifications of the MMCs, CMCs and CFCs.
- Benchmark the properties of the experimental models with comparable PAN-CF respectively fossil based MMCs, CMCs and CFCs.

Specifications, **Applications**

	Material Specifications	Possible Appilcations	
MMCs	 High heat conductivity Low thermal dilatation 	 Cooling elements Brackets Tribolic, self greasing materials 	
CMCs (SiC/C)	 High resistance to thermal shock Low thermal dilatation Enhanced toughness Temperature stability 	 Brake disks Friction bearing Ballstic elements Heat exchanger Furnace elements 	
CFCs	 Low thermal dilatation Pressure resistant High bending strength 	 Furnace structure elements Collimators Furnace insulation Heater elements Thermal Isolation, spreader 	

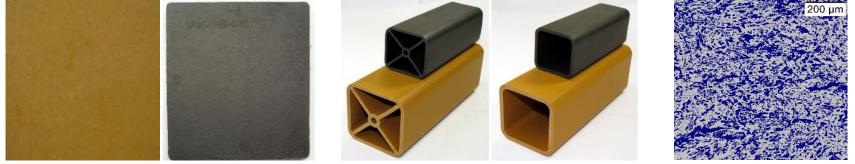
Preparation of Green-Bodies and Corresponding Porous Carbons

3D-Printing (feedstock printer) Injection Molding

Wood fiber based

Lignin based

Wood fiber based


Corresponding porous carbon templates and micrograph

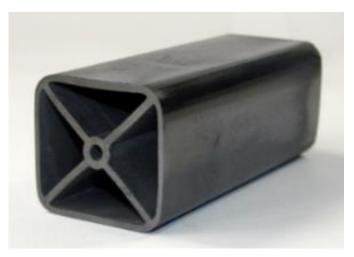
- 3D-printing and injection molding: around 30 wt% natural fiber content is the upper limit → injection pressure and flowing properties are limiting.
- 3D-printing: zero pressure / injection molding: up to 2000 bar.
- Carbonization of green-bodies with 30 wt% natural fiber content leads to porous carbon templates with densities between 0.60-0.75 g cm⁻³.

Preparation of Green-Bodies and Corresponding Porous Carbons

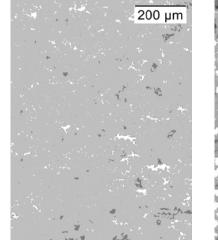
Press

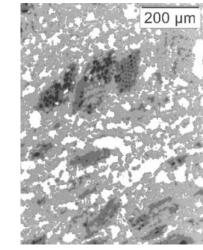
Profile Extrusion

Both wood fiber based with corresponding porous carbon templates


Carbon micrograph

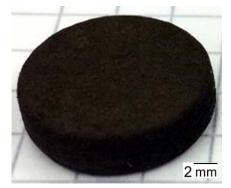
- Compounds with a natural fiber content > 40 wt% \rightarrow by pressing and extrusion only.
- Press: 10-30 bar / profile extrusion: 100-200 bar.
- With fiber contents of 50 wt% in the green-bodies densities of the porous carbon templates reach 0.85-0.95 g cm⁻³.


KPLUS

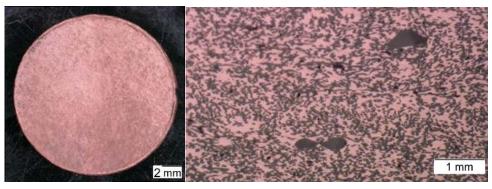


Preparation of CMCs by Si-infiltration of Porous Carbons

C/Si/SiC-ceramic profile



C/Si/SiC with high SiC-content C/Si/SiC with high Si-content micrographs (SiC: light grey, C: dark grey, Si: white)


- Liquid silicon infiltration at 1600 °C, vacuum.
- Density of the porous carbons determines the grade of the C/Si/SiC-ceramics.
- Green bodies with **30 wt% natural fibers** → **high Si content** in ceramic.
- Green bodies with **50 wt% natural fibers** → **high SiC content** in ceramic.

Preparation of Cu/C-MMCs by Pressing Techniques

Mixed fibers and copper powder pressed at 100 MPa and carbonized

Cu/C-MMC: redensified at 1000°C, 50 MPa (Ar+H₂) and micrograph (Cu: reddish).

- 50/50 wt% mixtures of copper powder and Tencel[©] fibers were pressed with 100 MPa to pellets and carbonized at 900 °C (inert atmosphere).
- Redensification and heat treatment at 1000 °C and 50 MPa under a reducing atmosphere.
- The micrograph of the resulting Cu/C-MMC shows an overall homogeneous distribution of the carbon in the copper matrix. Some aggregates are visible.

Summary and Outlook

- Novel thermoset-based NFC green-bodies have been prepared by injection moulding, 3D-printing, extrusion and pressing techniques.
- > A carbonization of these NFC green-bodies leads to **porous carbon pre-forms**.
- Further processing to CMCs by liquid silicon infiltration leads to C/Si/SiC-ceramics. The fiber content in the green-bodies determines in a great extent the grade of the final CMCs.
- MMCs have been prepared by pressing techniques and heat treatment from copper and natural fibers. The fiber structure of viscose derived Cu/C-MMCs is superior to the particle structure of wood and leads to competitive heat conductivities compared to PAN-CF MMC analogues.
- The focus in the following work lies in developing MMCs by infiltration with metal melts and CFCs by infiltration with carbon-rich bio-based binders into porous carbon pre-forms.

This work was conducted within the **project BioC4HiTech** funded through the program

Production of the Future by the Austrian Research Promotion Agency (FFG).

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Contact:

Dr. Andreas Haider Business Development

Kompetenzzentrum Holz GmbH Altenberger Straße 69, 4040 Linz, Austria

> Phone: +43 (0)732 2468 6771 Cell: +43 (0)676 897 44 535 E-Mail: <u>a.haider@wood-kplus.at</u>

Homepage: <u>www.wood-kplus.at</u> YouTube: <u>https://www.youtube.com/channel/UCITTK/VmNwOXMpvbXr3iPqQ</u> LinkedIn: <u>https://www.inkedin.com/company/kompstenzzentum-hotz-gritbh</u>