

IEA SHC Task 61 / EBC Annex 77 Integrated Solutions for Daylight and Electric Lighting

From component to user centered system efficiency

Energy in Buildings and Communities Programme

FFFG Forschung wirkt.

Bundesministerium Verkehr, Innovation und Technologie

AUSTRALIA · AUSTRIA · BELGIUM · BRAZIL · CHINA · DENMARK · GERMANY · JAPAN · NETHERLANDS · NORWAY · SINGAPORE · SLOVAKIA · SWEDEN · SWITZERLAND · UNITED KINGDOM · USA

IEA SHC Task 61 / EBC Annex 77 Integrated solutions for daylight and electric lighting

From component to user centered system efficiency Operating Agent: J. de Boer, Germany

Subtask A B. Matusiak, Norway User Perspective, Requirements	Subtask B M. Fontoynont, Denmark Integration and optimization of daylight and electric lighting	Subtask C D. Geisler-Moroder, Austria Design support for practioners (Tools, Standards, Guidelines)	Subtask D N. Gentile, Sweden W. Osterhaus, Denmark Lab and field study performance tracking
Joint Working	Evaluation method	Evaluation method for integrated lighting solutions	
Group	Virtual reality (VR) k	Virtual reality (VR) based Decision Guide	

Belgien, Brasilien, China, Dänemark, Deutschland, Italien, Japan, Niederlande, Norwegen, Österreich, Schweden, Schweiz, Singapur, Slowakei, USA

Subtask A: User Perspective, Requirements

Coordination: Barbara Matusiak, NTNU, Norway

- **Objective:** Consolidation of available knowledge on user-, activity- and time-depending visual and non-visual *requirements* including cultural and climatic dependencies. Set up *use cases* in specific applications, reflecting typical temporal changes in the usage of these interior spaces. Aggregation in so called *personas* as representations of the behaviour of a hypothesized group of users in the defined applications.
- A.1 User requirements
- A.2 Use Cases
- A.3 Representation of user behaviour personas

Subtask B: Integration and optimization of day- and electric lighting

Coordination: Marc Fontoynont, SBI, Denmark

- **Objective:** Identify the promising technical solutions to offer optimal control of lighting and daylighting components, with respect to minimum use of lighting electricity, maximum satisfaction of users, most attractive user interface (users and facility managers)
- B.1 Interview of professionals: opportunities and barriers
- B.2 Critical review of existing control systems and their functionalities
- B.3 Critical review of new approaches under development
- B.4 Review of other important aspects affecting performance of controls
- B.5 Critical analysis of interfaces
- B.6 Link with standardization activities

vew technology	Denents / Interest	
Viniaturisation of sensors, integrated	Ability to read more relevant information locally, to offer a	
sensors	better fit with the demand of the users and facility	
	managers	
Use of LED in DC power supply	Ability to control each luminaire individually, and dim power	
	progressively	
	Ability to vary spectrum of light according to time of day and	
	specific requirement of users (for example elderly, of people	
	with specific visual handicap)	
Wireless controls	Reduction of costs of installations	
	Possibility to keep installation future proof (allowing	
	modification of indoor space management)	
nternet of Things	Link to internet can facilitate management of lighting	
	sources with data flow upstream and downstream	
	Management can also integrate external information (
	climatic conditions, variable cost of electricity, etc.)	
	(Security issues have to be addressed)	
nterface on tablets and smart phones	User friendly, mobile interface which could be used	
	anywhere	
	High quality graphics and possibility to ease operation: make	
	the system fully understood.	
Electrochromic glazing	Possibility to control freely daylight penetration, glare	
	control, under various sections of the facade glazing.	
Silent electric motors	Can operate blinds systems and any active daylighting	
	systems more continuously and silently, to increase	
	satisfaction by users	
PoE (Power over Ethernet), DC-nets,	New power technologies may call for new definitions of	
driver-less/central hub solutions etc	system components etc.	
Built-in light sources	LED light sources can be integrated in other building	
	components such as soiling or wall modules	

Subtask C: Design Support for practitioners

Coordination: David Geisler-Moroder, Bartenbach, Austria

- **Objective:** Focus on the application of technical innovations in the field of integrated lighting solutions in practitioners' workflows. Bring findings onto the desktops of designers by integration into widely used software tools, standards and codes, and design guidelines.
- C.1 Review of state of the art design workflows
- C.2 Standardization of BSDF daylight system characterization
- C.3 Spectral sky models for advanced daylight simulations
- C.4 Hourly rating method for integrated solutions

Subtask D: Lab and Field Study Performance Tracking

Coordination: Niko Gentile, Lund University, Sweden; Werner Osterhaus, Aarhus University, Denmark

- **Objective:** Demonstrate and assess typically applied concepts for integrated daylighting and electric lighting design by medium-term experiments in live-labs, supplemented by short-term investigations in controlled research laboratory environments, as well as performance tracking in "real" field studies.
- D.1 Literature Survey: Quantifying Potential Energy Savings
- D.2 Monitoring protocol
- D.3 Case Studies: Living Laboratories and Real Buildings
- D.4 Lessons Learned Guidance to Decision Makers

Joint Working Group: Evaluation tool & VR Decision Guide

Coordination: Marc Fontoynont, Aalborg University, Denmark; Jan de Boer, Fraunhofer Institute of Building Physics, Germany

Objective:

The joint working group shall integrate and focus main results of the subtasks and look for an appropriate implementation

1. <u>Evaluation / rating tool</u> (hourly based) for integrated lighting solutions for implementation in standards and tools.

2. VR Decision guide (technical, architectural, contractual)

Management aspect: common goal, dissemination

Projektpartner

35 participants • 27 universities / institutes / companies • 16 countries

Erste Outputs

ORE + SLOVAKIA + SWEDEN + SWITZERLAND = UNITED KINGDOM + U

Daylighting of Non-Residential **Buildings**

IEA SHC Position Paper

The task will work an integrating different building sectors involved (left). Example of a new integrated focade component, transmitting daylight while at the same time emitting electric light (right).

Large Potential for Saving Electricity

Lighting accounts for approximately 19 %, i.e. 2 900 TWh, of the global electric energy consumption. Projections by the IEA show that if governments only rely on current policies, global electricity use for lighting will grow to around 4 250 TWh by 2030. Due to the world's growing population and the increasing demand for electrically driven services in emerging economies, the increase will occur despite constant improvements in energy efficiency of lighting systems.

During the last years the focus has shifted towards digitalized lighting. This offers the chance to overcome problems in the integration of daylight and electric lighting: (New) technologies equipped with sensors, "intelligent" software and wireless data ommunication introduce large possibilities to bring the separate narket sectors of electric lighting and façade technology closer

Research and developments in the field of energy efficient lighting technicuse encompassing daylighting, electric lighting and lighting controls, combined with activities employing and bringing these techniques to the market, can controlute significantly to reduce worldwide electricity consumption and CO₂ emission:

RES: AUSTRALIA = AUSTRIA + BELGIUM + BRAZIL + CHINA + DENM

RANCE • GERMANY • JAPAN • NETHERLANDS • NORW

26.09.2019/DGM

Erste Outputs (coming soon)

ISO/TC 274/JWG 1 N 223

ISO/TC 274/JWG 1

Energy performance of lighting in buildings (joint working group with CIE-JTC 6) E-mail of Secretary: <u>janine.winkler@din.de</u> Secretariat: DIN

Call for experts for ISO/TC 274/JWG 1 task force "Revision of ISO 10916"

Date of document 2019-08-09

Vielen Dank für Ihre Aufmerksamkeit!

Fragen?