

FLIPPR² PROCESS INTEGRATION

Leo Arpa, Mondi

THE PROJECT

Flippr² is a collaborative research project for the development of process integration of latest biorefinery research findings into the pulp and paper industry, which already today operates aqueous biorefineries - pulp mills being some of the major contributors to the bio-economy.

01.12.2017

THE ADDED-VALUE SPENT LIQUOR PROCESSING TEAM:

Thomas Pichler, Silvia Maitz, Andreas Pirschner, Marlene Kienberger

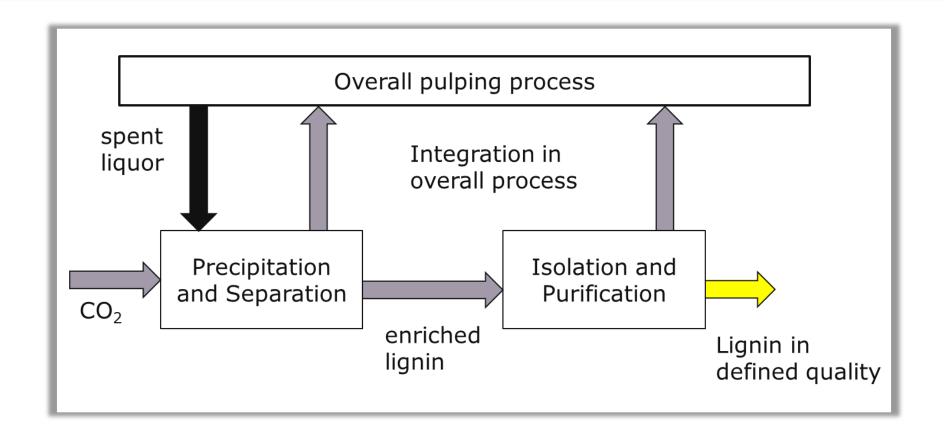
TASKS

- Continuous process
- Lignin precipitation from black liquor with plant derived CO₂
- Process integration into the existing pulping process
- Parallel development of on site and off site applications of lignin

Working Hypotheses:

 Simultaneous precipitation and separation using newly developed reactor design will enable closing the loops and to reduce energy and water consumption.

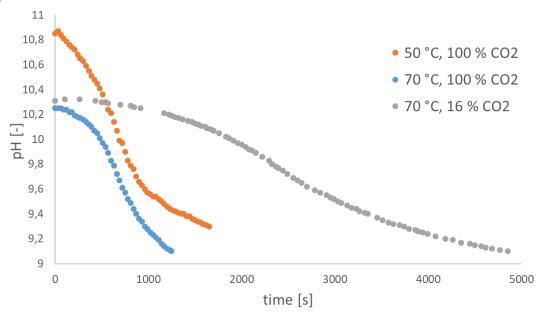
STATE OF THE ART PROCESSES


	Wash water demand [m³/t lignin] \ lignin ash content [%]	Advantages	Disadvantages
LignoBoost	2-2.5 m³ \ 0.2-1.4 %	+ Improved filtration properties+ Low ash content+ Increased lignin yield	Second filter press necessaryRelease of odorous compounds
LignoForce	10-15 m³ \ 0.07-0.18 %	 + Improved filtration properties + Low ash content + Lower acid consumption + Less odor emission 	 Lowerlignin yield Oxygen requirements SO₂ emissions
SLRP	1.36 m³ \ 1.1 %	 + Improved filtration properties + Low ash content + Continuous process + Effective vent recycle 	Lower energy efficiencyOperation under increased pressure

- High wash water demand
- Present lignin application: on site fuel for lime kiln

PROCESS IDEA

NEW REACTOR DESIGN



PRECIPITATION WITH FLIPPR- REACTOR

- Precipitation experiments
 - Gas feed: 100% and 16% CO₂ (= min concentration of plant derived CO₂)
 - Temperature: 70°C and 50°C

PROJECT PARTNERS

Industrial partners:

Scientific partners:

FUNDED BY

The K-Project Flippr² is funded as part of COMET - Competence Centers for Excellent Technologies promoted by BMVIT, BMWFJ, Styria and Carinthia. The COMET program is managed by FFG.

Competence Centers for **Excellent Technologies**

Federal Ministry for Transport, Innovation and Technology

01.12.2017 10