
Bundesministerium Innovation, Mobilität und Infrastruktur

Energieforschungserhebung 2024

Ausgaben der öffentlichen Hand in Österreich Erhebung für die IEA

Berichte aus Energie- und Umweltforschung

Impressum

Medieninhaber, Verleger und Herausgeber: Bundesministerium für Innovation, Mobilität und Infrastruktur, Radetzkystraße 2, 1030 Wien

Verantwortung und Koordination:

Abteilung für Energie- und Umwelttechnologien

Leitung: DI (FH) Volker Schaffler, MA, AKKM

Kontakt zu "IEA Forschungskooperation": Mag.^a Sabine Mitter

Autorinnen und Autoren:

Andreas Indinger, Felix Bettin, Marion Rollings, Österreichische Energieagentur

Portraitfoto Bundesminister Peter Hanke: © David Visnjic

Dieser Bericht gibt Einblick in die Ergebnisse eines Forschungsprojekts, das vom BMIMI gefördert wurde. Die inhaltliche Verantwortung für Vollständigkeit und Richtigkeit liegt bei den Autorinnen und Autoren.

Wien, 2025

Rückmeldungen: Ihre Überlegungen zu vorliegender Publikation übermitteln Sie bitte an iii3@bmimi.gv.at.

Vorwort

BM Peter Hanke

Forschung und Entwicklung tragen maßgeblich zur Sicherung unserer Wettbewerbsfähigkeit, zu nachhaltigem Wachstum sowie zur zukunftsorientierten Positionierung Österreichs als Innovations- und Industriestandort bei. Daher ist es mir als Innovationsminister ein besonderes Anliegen, auch in wirtschaftlich schwierigen Zeiten und bei engen Budgets einen Schwerpunkt auf diese Bereiche zu legen. Der Erforschung und Entwicklung neuer umweltfreundlicher Lösungen für Energiefragen spielt hier eine wichtige Rolle, denn diese wirkt weit über den Kernbereich der Forschung hinaus. Sie entscheidet wesentlich über den Wohlstand in unserem Land, die Wettbewerbsfähigkeit unserer Industrie, unterstützt die heimische Innovationskraft und schafft gleichzeitig hochwertige Arbeitsplätze.

In den vergangenen Jahren wurde hier bereits gute und wichtige Arbeit geleistet. Die Ausgaben der öffentlichen Hand für Energieforschung sind kontinuierlich gestiegen. Das Jahr 2024 geht sogar als Rekordjahr in die Geschichte ein: Die öffentliche Hand investierte rund 410 Millionen Euro in Forschungs-, Entwicklungs- und Pilotprojekte im Energiebereich – über 90 Millionen Euro mehr als im Vorjahr. Durch die Bildung der neuen Bundesregierung im Frühjahr des heurigen Jahres hat sich einiges geändert, so manche bisherige Zuständigkeit ist in ein anderes Ressort gewandert. So fällt etwa der Bereich der Energiepolitik nicht länger in die Kompetenz des Innovationsministeriums. Dennoch bleibt das Vorantreiben der Energie- und Mobilitätswende ein zentrales Anliegen meines Ressorts und ist ein Schlüsselfaktor auf dem Weg zu Klimaneutralität, technologischer Souveränität und mehr Resilienz.

Wir sehen zunehmend, wie wichtig es ist, Energiefragen interdisziplinär zu betrachten. Egal, ob die Dekarbonisierung der Raumwärme, der endgültige Ausstieg aus fossilen Energieträgern oder die Mobilitätswende – all dies wird nur durch gemeinsame Anstrengungen gelingen. Erfreulich ist daher der hohe Eigenmitteleinsatz für Energieforschung bei außeruniversitären Forschungseinrichtungen wie dem "Austrian Institute of Technology" und "Silicon Austria Labs" mit rund 27 bzw. 18 Millionen Euro – ein starkes Signal für Eigenverantwortung und Engagement.

Österreich hat in der Vergangenheit schon wichtige Schritte nach vorne gemacht. Doch die Herausforderungen bleiben groß. Nur mit Innovationen werden wir gestärkt aus der Rezession hervorgehen und auf einen nachhaltigen Wachstumspfad zurückkehren. Ich werde mich daher auch weiterhin mit Nachdruck für einen starken Industrie-, Technologie- und Innovationsstandort Österreich einsetzen.

Peter Hanke Bundesminister für Innovation, Mobilität und Infrastruktur

Inhalt

7 9 11
11
+ +
19
27
27
28
29
29
30
30
30
31
32
32
33
33
34
34 34
34 34 36
34 34 36 37
34 34 36 37
34 36 37 38
34 36 37 38 39 40
34 36 37 38 39 40 42
34 36 37 38 39 40 42 43
34 36 37 38 39 40 42 43
34 36 37 38 39 40 42 43
34 36 38 39 40 42 43 44
34 36 37 38 39 40 42 43 45 47
34 36 37 38 40 42 43 44 45 47 48
34 36 37 38 39 40 42 44 45 47 48
34 36 37 38 40 42 44 45 47 48 49
34 36 37 38 39 40 42 43 47 47 48 49 50 51
34 36 37 38 40 42 44 45 47 48 49

4.5.1	Wasserstoff	55
4.5.2	Brennstoffzellen	57
4.6 Über	tragung, Speicher und andere	57
4.6.1	Elektrische Kraftwerke	59
4.6.2	Elektrische Übertragung und Verteilung	60
4.6.3	Speicher	61
4.7 Quer	schnittsthemen	62
5 Institut	ionen im Detail	64
5.1 Förde	ermittel und Forschungsaufträge	64
5.1.1	Bundesministerien	65
5.1.2	Klima- und Energiefonds (KLIEN)	75
5.1.3	Bundesländer	78
5.1.4	Forschungsförderungseinrichtungen	87
5.1.5	Nationalstiftung für Forschung, Technologie und Entwicklung (NFTE)	93
5.2 Eiger	forschung an Forschungseinrichtungen	93
5.2.1	Außeruniversitäre Forschungseinrichtungen	93
5.2.2	Fachhochschulen	101
5.2.3	Universitäten	109
6 Energie	eforschung im Vergleich	122
6.1 Antei	l an den Forschungsausgaben	122
6.2 Antei	l am Bruttoinlandsprodukt	123
7 Angab	en zur Privatwirtschaft	125
8 Gende	spezifische Auswertung	128
Literatur	verzeichnis	133
Verzeichr	is der österreichischen Energieforschungserhebungen	134
Themenb	ereiche englisch	135
Themenb	ereiche deutsche Übersetzung (AEA)	141
Abbildun	gsverzeichnis	147
Tabellenv	erzeichnis	149
Abkürzun	gen	151

Kurzfassung

Die Ausgaben der öffentlichen Hand für Forschungs-, Entwicklungs- und Demonstrationsprojekte im Energiebereich betrugen im Jahr 2024 401,1 Millionen Euro. Der mit Abstand höchste bisher in Österreich erhobene Wert des Vorjahres 2023 wurde weiter überschritten, mit einer Steigerung von 90,3 Millionen Euro (also um 29,1 %) gegenüber 2023.

An erster Stelle liegt – wie bereits in den Jahren zuvor – der Bereich "Energieeffizienz" mit Aufwendungen von 184,0 Millionen Euro, eine Steigerung von 51,5 % gegenüber dem Vorjahr. Mit großem Abstand folgen die Bereiche "Erneuerbare Energie" mit 69,1 Millionen Euro (Steigerung von 132,4 % gegenüber 2023) und "Wasserstoff und Brennstoffzellen" mit einer geringen Steigerung auf 65,3 Millionen Euro. In den Bereich "Übertragung, Speicher und andere" fielen 40,5 Millionen Euro (+30,3 %) und in "Querschnittsthemen" flossen 36,3 Millionen Euro (-41,1 %). Im Bereich "Fossile Energie" stiegen die Investitionen auf 4,7 Millionen Euro, was besonders auf den Bereich CO₂-Abtrennung und -Speicherung (CCS) zurückgeht, während sie im Bereich "Kernenergie" leicht auf 1,2 Millionen Euro zurückgingen (-16,9 %).

83,5 % der in diesem Bericht dargestellten Ausgaben im Jahr 2024 sind direkte Finanzierungen durch Förderstellen (Bund, Länder, Fonds). Die Bundesministerien stellten im Jahr 2024 278,1 Millionen Euro für Programme zur Verfügung, davon kann mit 152,3 Millionen Euro der Großteil dem damaligen Bundesministerium für Klimaschutz (BMK) zugeordnet werden. Der Klimaund Energiefonds verringerte die Investitionen um ein Drittel auf 43,4 Millionen Euro. Die von den Bundesländern genannten Ausgaben betrugen 5,7 Millionen Euro, allen voran Steiermark mit 1,8 Millionen Euro, Oberösterreich mit 1,5 Millionen Euro und Wien mit 0,9 Millionen Euro. Die Ausgaben der FFG Basisprogramme betrugen 23,2 Millionen Euro (davon 18,5 Millionen Euro aus UG34). Der Wissenschaftsfonds FWF hatte mit 2,8 Millionen Euro nur mehr rund ein Zehntel der Mittel des ungewöhnlichen hohen Vorjahres zu verzeichnen.

Der verbleibende Anteil von 17,5 % macht die mit Bundes- beziehungsweise Landesmitteln grundfinanzierte Eigenforschung an Forschungseinrichtungen aus. Das Austrian Institute of Technology (AIT) und die Silicon Austria Labs dominierten mit 26,8 beziehungsweise 18,4 Millionen Euro den Eigenmitteleinsatz in der Energieforschung bei den außeruniversitären Forschungseinrichtungen. Die gemeldeten Eigenmittelaufwendungen der Universitäten (inklusive Institute of Science and Technology – ISTA) stiegen auf 17,8 Millionen Euro. Die mit Abstand höchsten Aufwendungen kamen dabei von der Technischen Universität Wien (12,9 Millionen Euro). Die Aufwendungen aus Eigenmitteln bei den Fachhochschulen stiegen auch leicht an und machten im Jahr 2024 1,7 Millionen Euro aus.

Rund 1.350 Projekte und Aktivitäten wurden im Jahr 2024 erfasst. 42,1 % der Mittel wurden dabei für angewandte Forschung eingesetzt, die Ausgaben für experimentelle Entwicklung machten jedoch 48,6 % aus, ein deutlich höherer Anteil als noch 2023 (28,9 %). Die Investitionen in die erstmalige Demonstration betragen 6,1 %, jene für energiebezogene Grundlagenforschung 3,2 %.

In 167 von 387 der im Jahr 2024 durch beziehungsweise über die FFG beauftragten Projekte ist zumindest eine Frau in leitender Funktion im Konsortium tätig. 2024 wurden mehr Projekte von Frauen geleitet als in den Jahren davor: 92 Projekte beziehungsweise fast jedes vierte Projekt. Diese Projektleiterinnen verantworteten im Durchschnitt Projekte mit vergleichbarem Förderbarwert wie ihre männlichen Kollegen, der Gap konnte sich hier erstmals fast schließen. Der Anteil von Frauen, die für die fachliche Koordination einer Organisation im Konsortium verantwortlich sind, beträgt 20,6 %. Die jeweiligen Anteile variieren stark zwischen den bearbeiteten Themen beziehungsweise finanzierenden Programmlinien.

Abstract

Public spending on research, development and demonstration projects in the energy sector totalled 401.1 million euros in 2024. This figure exceeded the previous Austrian record in 2023 by 90.3 million euros (a 29.1% increase).

As in previous years, the "Energy efficiency" area is in first place with expenditure of 184.0 million euros, an increase of 51.5% compared to the previous year. This is followed at a considerable distance by the areas of "Renewable energy sources" with 69.1 million euros (an increase of 132.4% compared to 2023) and "Hydrogen and fuel cells" with a slight increase to 65.3 million euros. The "Other power and storage technologies" area accounted for 40.5 million euros (+30.3%), while the "Other cross-cutting technologies and research" area accounted for 36.3 million euros (-41.1%). In the "Fossil fuels" area, investments rose to 4.7 million euros, which is particularly attributable to the area of CO₂ capture and storage (CCS), while they fell slightly in the "Nuclear fission and fusion" area to 1.2 million euros (-16.9%).

83.5% of the expenditure presented in this report in 2024 is direct financing from funding bodies (federal government, federal states, funds). The federal ministries provided 278.1 million euros for programmes in 2024, the majority of which (152.3 million euros) can be attributed to the former Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK). The Climate and Energy Fund reduced investments by a third to 43.4 million euros. The expenditure reported by the federal states totalled 5.7 million euros, with Styria leading the way with 1.8 million euros, followed by Upper Austria with 1.5 million euros and Vienna with 0.9 million euros. The expenditures of FFG basic programmes amount to 23,2 million euros (of which 18,5 million euros from UG34). At 2.8 million euros, the funding provided by the Austrian Science Fund (FWF) was only around a tenth of the unusually high level of the previous year.

The remaining 17.5% is accounted for by in-house research at research institutions financed by federal or state funds. The Austrian Institute of Technology (AIT) and Silicon Austria Labs dominated the use of own funds in energy research at non-university research institutions with 26.8 and 18.4 million euros, respectively. The reported own resources expenditure of the universities (including the Institute of Science and Technology Austria – ISTA) rose to 17.8 million euros. By far the highest expenditure came from the TU Wien (12.9 million euros). Expenditure from the universities of applied sciences' own funds also increased slightly, totalling 1.7 million euros in 2024.

Around 1,350 projects and activities were recorded in 2024. 42.1% of the funds were used for applied research, while expenditure on experimental development accounted for 48.6%, a significantly higher proportion than in 2023 (28.9%). Investments in first-of-its-kind demonstration amounted to 6.1%, while those for energy-related research were 3.2%.

In 167 out of 387 of the projects commissioned by or via the FFG in 2024, at least one woman held a leading position in the consortium. More projects were led by women in 2024 than in previous years: 92 projects or almost one in four projects. On average, these female project managers were responsible for projects with a comparable funding cash value to their male colleagues, meaning the gap was almost closed for the first time. The proportion of women responsible for the technical coordination of an organisation in the consortium is 20.6%. The respective proportions vary greatly between the topics worked on and the funding programme lines.

1 Übersicht über die Energieforschungsausgaben 2024

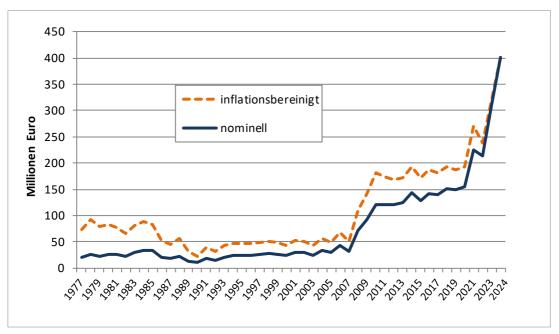
Die Mitgliedschaft bei der Internationalen Energieagentur (IEA) verpflichtet Österreich zur jährlichen Erfassung aller in Österreich durchgeführten Forschungs-, Entwicklungs- und Demonstrationsprojekte im Energiebereich, die mit Mitteln der öffentlichen Hand gefördert beziehungsweise finanziert wurden. Die Österreichische Energieagentur – Austrian Energy Agency (AEA) wurde vom Bundesministerium für Innovation, Mobilität und Infrastruktur (BMIMI) mit der Durchführung der Erhebung und der Auswertung der Daten beauftragt.

Diese jährliche Erhebung stellt nicht nur eine internationale Verpflichtung dar, sondern erlaubt es auch, die Bedeutung der Energieforschung für Österreich herauszuarbeiten sowie Schwerpunktsetzungen zu gestalten und zu überprüfen. Auch sollen bestimmte Trends rechtzeitig erkannt werden, um Maßnahmen zur Gegensteuerung entwickeln zu können. Die vorliegende Erhebung orientiert sich an den aktuellen Vorgaben der IEA, die unter anderem eine Zuordnung zu über 140 verschiedenen Subthemen sowie eine Vergleichbarkeit mit den anderen 31 IEA-Mitgliedstaaten sowie ausgewählten weiteren Ländern ermöglicht. Da die Zahlen anderer Länder etwa sechs Monate später als die hier dargestellten vorliegen, können diese Berechnungen erst immer zu Jahresende durchgeführt und publiziert werden:

https://nachhaltigwirtschaften.at/de/iea/publikationen/energieforschungserhebungen.php

Die erhobenen und in diesem Bericht erläuterten Ausgaben der öffentlichen Hand für Energieforschung in Österreich beziehen sich auf Fördermittel beziehungsweise Forschungsaufträge

- der Bundesministerien,
- des Klima- und Energiefonds (KLIEN),
- der Bundesländer,
- der Österreichischen Forschungsförderungsgesellschaft (FFG),
- des Österreichischen Wissenschaftsfonds FWF,
- der Kommunalkredit Public Consulting (KPC) und
- des Austria Wirtschaftsservice (aws)


sowie auf die mit Bundes- und Landesmitteln finanzierte Eigenforschung an

- außeruniversitären Forschungseinrichtungen,
- Universitätsinstituten und

Fachhochschulen.

Die erfassten Ausgaben der öffentlichen Hand für Forschungs-, Entwicklungs- und Demonstrationsprojekte im Energiebereich betrugen im Jahr 2024 401,1 Millionen Euro. Das ist eine deutliche Steigerung um 29,1 % beziehungsweise 90,3 Millionen Euro verglichen mit dem Jahr 2023. In der folgenden Abbildung ist die langfristige Entwicklung der Ausgaben skizziert.

Abbildung 1: Zeitreihe der Energieforschungsausgaben der öffentlichen Hand 1977 bis 2024, nominell und inflationsbereinigt

Quelle (Daten): Verbraucherpreisindex VPI, Statistik Austria

An erster Stelle liegt – wie bereits in den Jahren zuvor – der Bereich "Energieeffizienz" mit Aufwendungen von 184,1 Millionen Euro. Dieser Wert stellt eine Steigerung im Vergleich zu 2023 um die Hälfte dar. Der Bereich "Erneuerbare Energien" stellt mit einem Anstieg von 132,4 % auf eine Rekordsumme von 69,1 Millionen Euro einen immensen Sprung dar. Dabei stiegen vor allem die Mittel für den Subbereich Bioenergie, welcher fast zwei Drittel des gesamten Bereichs ausmacht. Der Themenbereich "Wasserstoff und Brennstoffzellen" blieb mit einer Steigerung von 6,2 % relativ stabil verglichen mit dem Vorjahr und belief sich 2024 auf 65,3 Millionen Euro. Danach folgen die Bereiche "Übertragung, Speicher und andere" mit einem Anstieg von 30,3 % auf 40,5 Millionen Euro (Anstieg zu 2023 um 9,1 Millionen Euro) und "Querschnittsthemen", wo die Investitionen um 41,1 % zurückgingen (Rückgang um 25,3 Millionen Euro). Bei den "Querschnittsthemen" sind neben den thematisch breiten Projekten auch allgemeine energiebezogene Grundlagenforschung sowie die Analyse des Energiesystems. Die Themenbereiche "Fossile Energie" (4,7 Millionen Euro) und "Kernenergie" (1,2 Millionen Euro, primär Fusionsforschung im europäischen Rahmen) liegen auch 2024 in der Mittelausstattung vergleichsweise weit zurück und haben weiterhin keine Priorität in der öffentlich finanzierten

Energieforschung in Österreich. Die IEA erfasst unter "Fossile Energie" auch allgemeinere Fragestellungen zu Verbrennungs- und Umwandlungstechnologien sowie CO₂-Abtrennung und - Speicherung (CCS). Die Verteilung nach den sieben übergeordneten Themenbereichen ist für 2024 in Abbildung 2 und im zeitlichen Verlauf in Abbildung 3 dargestellt. Die Entwicklung im Vergleich zum Vorjahr ist in Tabelle 1 illustriert.

Abbildung 2: Energieforschungsausgaben in Österreich 2024 gesamt nach dem IEA-Code

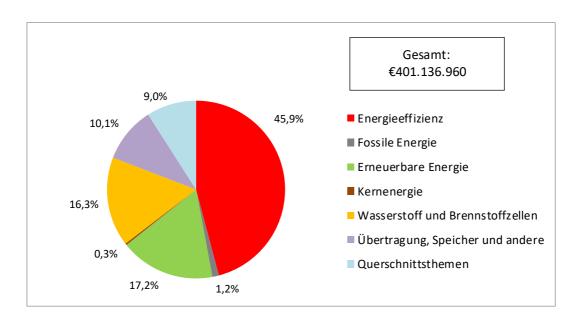


Abbildung 3: Ausgaben der öffentlichen Hand 2020 bis 2024 nominell

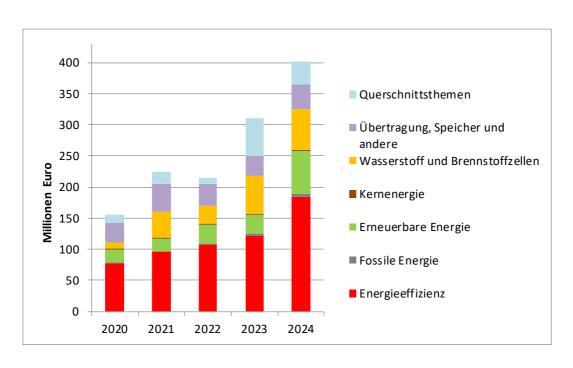


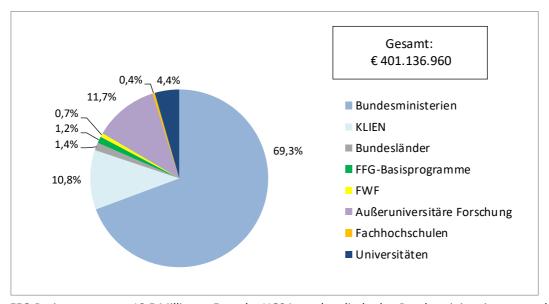
Tabelle 1: Veränderungen gegenüber 2023 – Themen nach dem IEA-Code

Themen nach dem IEA- Code	2024	Veränderung gegenüber 2023 in Euro	Veränderung gegenüber 2023 in Prozent
Energieeffizienz	184.050.222	62.533.921	51,5 %
Fossile Energie	4.722.777	773.731	19,6 %
Erneuerbare Energie	69.135.703	39.384.746	132,4 %
Kernenergie	1.156.155	-235.156	-16,9 %
Wasserstoff und Brennstoffzellen	65.274.634	3.803.427	6,2 %
Übertragung, Speicher und andere	40.531.688	9.414.949	30,3 %
Querschnittsthemen	36.265.781	-25.309.150	-41,1 %
Gesamtergebnis	401.136.960	90.366.468	29,1 %

Die zehn Subkategorien mit den höchsten Ausgaben im Jahr 2024 für Forschung, Entwicklung und erstmalige Demonstration sind in Tabelle 2 aufgelistet. Eine detaillierte Auswertung und Darstellung nach den Subkategorien in den einzelnen Themenbereichen findet sich in Abschnitt 4.

Tabelle 2: Top Ten der Themen im Jahr 2024

Rang	Subkategorie [zugeordneter IEA-Code]	Ausgaben 2024 (in Millionen Euro)
1	Wasserstoff [51]	60.381.223
2	Energieeffizienz in der Industrie [11]	55.491.085
3	Querschnittsprojekte Energieeffizienz [19]	47.822.930
4	Bioenergie [34]	43.063.297
5	Hybrid- und Elektrofahrzeuge inklusive Speichertechnologie und Ladeinfrastruktur [1311, 1312, 1314]	26.895.482
6	Speichertechnologien: Strom und Wärme; exklusive Wasserstoff, Speicher in Fahrzeugen, tragbare Geräte [63]	22.034.368


Rang	Subkategorie [zugeordneter IEA-Code]	Ausgaben 2024 (in Millionen Euro)
7	Analyse des Energiesystems [71]	20.054.198
8	Energieeffiziente Gebäude [121, 122, 129]	19.731.692
9	Elektrische Übertragung und Verteilung [62]	14.227.214
10	Querschnittsthemen [73]	12.544.467

83,5 % der in diesem Bericht dargestellten Ausgaben im Jahr 2024 sind direkte Finanzierungen durch Förderstellen (Bund, Länder, Fonds). Der verbleibende Anteil von 16,5 % macht die mit Bundes- beziehungsweise Landesmitteln grundfinanzierte Eigenforschung durch sogenannte Eigenmittel an Universitäten, Fachhochschulen und außeruniversitären Forschungseinrichtungen aus:

- Die Bundesministerien stellten im Jahr 2024 278,1 Millionen Euro zur Verfügung, eine Verdopplung zum Jahr davor. Davon werden 152,3 Millionen Euro im Bericht dem damaligen BMK zugeordnet dargestellt.
- Beim Klima- und Energiefonds sanken die Ausgaben in der energiebezogenen F&E (Forschung und Entwicklung) um fast ein Drittel und lagen bei 43,4 Millionen Euro.
- Die von den Bundesländern für 2024 genannten Ausgaben betrugen 5,7 Millionen Euro, allen voran trugen dazu die Steiermark (1,8 Millionen Euro), Oberösterreich (1,5 Millionen Euro) und Wien (0,9 Millionen Euro) bei.
- Die Kategorie "FFG-Basisprogramme" trug 4,7 Millionen Euro bei. Das niedrigere Niveau verglichen mit den Jahren bis 2021 ist insbesondere dadurch zu erklären, dass seit 2022 Projekte aus Budgetmittel der UG34 direkt den Ministerien zugeordnet werden. Im Jahr 2024 wurden 18,5 Millionen Euro der Basisprogramme direkt den Bundesministerien zugeordnet.
- Der Wissenschaftsfonds FWF hatte mit 2,8 Millionen Euro nur mehr rund ein Zehntel der im Vorjahr außergewöhnlich hohen Aktivitäten zu verzeichnen.
- Das AIT und die Silicon Austria Labs dominierten mit 26,8 beziehungsweise 18,4 Millionen Euro den Eigenmitteleinsatz in der Energieforschung bei den außeruniversitären Forschungseinrichtungen.
- Die Aufwendungen aus Eigenmitteln bei den Fachhochschulen (FH) stiegen leicht an und machten im Jahr 2024 1,7 Millionen Euro aus. Elf FHs meldeten hier Aktivitäten.
- Die gemeldeten Eigenmittelaufwendungen der Universitäten stiegen leicht auf 17,8 Millionen Euro. Die mit Abstand höchsten Aufwendungen kamen dabei von der TU Wien (12,9 Millionen Euro). Weitere sechs Universitäten sowie das Institute of Science and Technology Austria (ISTA) meldeten Eigenmittel.

Hier anschließend werden in einer Grafik die Verteilung nach Institutionen für das Jahr 2024 und in einer Tabelle die Entwicklung im Vergleich zum Vorjahr dargestellt.

Abbildung 4: Energieforschungsausgaben in Österreich 2024 gesamt nach Institutionen

FFG-Basisprogramme: 18,5 Millionen Euro der UG34 wurden direkt den Bundesministerien zugeordnet

Tabelle 3: Veränderungen gegenüber 2023 – Institutionen 2024

Institution	Ausgaben 2024 in Euro	Veränderung gegenüber 2023 in Euro	Veränderung gegenüber 2023 in Prozent
Bundesministerien	278.069.745	141.756.623	104,0 %
KLIEN	43.440.692	-18.889.941	-30,3 %
Bundesländer	5.667.012	-4.119.469	-42,1 %
FFG-Basisprogramme*	4.736.041	-2.480.807	-34,4 %
FWF	2.844.536	-22.877.616	-88,9 %
Außeruniversitäre Forschung	46.847.264	-3.861.680	-7,6 %
Fachhochschulen	1.700.054	202.109	13,5 %
Universitäten	17.831.616	637.249	3,7 %
Gesamtergebnis	401.136.960	90.366.468	29,1 %

^{*} Im Jahr 2024 wurden 18,5 Millionen Euro der UG34 direkt den Bundesministerien zugeordnet.

Eine detaillierte Darstellung der Aufwendungen der einzelnen Institutionen gibt es in Abschnitt 5.

400 350 ■ Universitäten 300 Fachhochschulen Außeruniversitäre Forschung 250 Millionen Euro FWF 200 ■ FFG-Basisprogramme 150 ■ Bundesländer 100 KLIEN 50 Bundesministerien

Abbildung 5: Ausgaben der öffentlichen Hand 2020 bis 2024 nach Institutionen, nominell

FFG-Basisprogramme: Geänderte Zuordnung seit 2022. Im Jahr 2024 wurden 18,5 Millionen Euro der UG34 direkt den Bundesministerien zugeordnet.

2024

Rund 1.350 Projekte und Aktivitäten wurden im Jahr 2024 erfasst. 42,1 % der Mittel wurden dabei für angewandte Forschung eingesetzt, die Ausgaben für experimentelle Entwicklung machten jedoch 48,6 % aus, ein deutlich höherer Anteil als noch 2023 (28,9 %). Die Investitionen in die erstmalige Demonstration betragen 6,1 %, jene für energiebezogene Grundlagenforschung 3,2 % (siehe Abbildung 6).

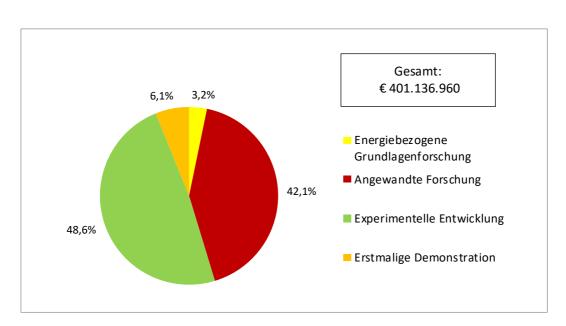


Abbildung 6: Einteilung der Gesamtausgaben 2024 nach Art der Forschung

0

2020

2021

2022

2023

Die Bedeutung der Energieforschung kann auch am Anteil der wirtschaftlichen Leistung einer Volkswirtschaft gemessen werden, die durch das Bruttoinlandsprodukt ausgedrückt wird (siehe Abbildung 7). Im Jahr 2024 führten die hohen Steigerungen im Energiebereich zu einem substanziellen Anstieg auf 0,083 %. Weiterführende Analysen dazu finden sich in Kapitel 6.

900 0,090% 800 0,080% Anteil der Energieforschungsausgaben 700 0,070% (Milliarden Euro, nominell) 600 0,060% der öff. Hand am 500 0,050% 400 0,040% 300 0,030% Bruttoin lands produktnominell (in Mrd. Euro) 200 0,020% Anteil Energieforschung am

Abbildung 7: Anteil der Energieforschungsausgaben der öffentlichen Hand in Österreich am Bruttoinlandsprodukt (BIP) 2020 bis 2024

Quelle (Daten): BIP, Statistik Austria

2020

100

0

Für diesen Bericht wurden auch genderspezifische Projektdaten ausgewertet:

2022

2021

In 167 von 387 der im Jahr 2024 durch beziehungsweise über die FFG beauftragten Projekte ist zumindest eine Frau in leitender Funktion im Konsortium tätig.

BIP (in %)

2023

0,010%

0,000%

2024

- 2024 wurden mehr Projekte von Frauen geleitet als in den Jahren davor: 92 Projekte beziehungsweise fast jedes vierte Projekt.
- Diese Projektleiterinnen verantworteten im Durchschnitt Projekte mit vergleichbarem Förderbarwert wie ihre männlichen Kollegen, der Gap konnte sich hier erstmals fast schließen.
- Der Anteil von Frauen, die für die fachliche Koordination einer Organisation im Konsortium verantwortlich sind, beträgt 20,6 %.
- Die jeweiligen Anteile variieren stark zwischen den bearbeiteten Themen beziehungsweise finanzierenden Programmlinien.

Eine ausführliche Darstellung findet sich in Kapitel 8.

2 Summary (Extended English Version)

Being a member of the International Energy Agency (IEA), Austria is obliged to record yearly all energy-related research, development and first-of-its-kind demonstration projects that are supported by public funds. The Austrian Energy Agency has been appointed by the former Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) to gather and evaluate the relevant data. This annual survey is not only an international obligation, but also allows emphasising the importance of energy research for Austria as well as creating and checking policy goals.

The recorded public sector expenditure on research, development and demonstration projects in the energy sector totalled 401.1 million euros in 2024. This is a significant increase of 29.1% or 90.3 million euros compared to 2023. Figure 1 outlines the long-term development of expenditure.

450 400 350 300 ——— PPP 2023

nominal

Figure 1: Public energy Research & Development (R&D) expenditures in Austria 1977 to 2024

Euros

200 150

250

100 50 As in previous years, the "Energy efficiency" area is in first place with expenditure of 184.1 million euros. This figure represents an increase of half compared to 2023. The "Renewable energy sources" area has seen a significant increase of 132.4%, reaching a record sum of 69.1 million euros. Funding for the bioenergy sub-area in particular increased, accounting for almost two thirds of the entire area. The "Hydrogen and fuel cells" area remained relatively stable with an increase of 6.2% compared to the previous year and totalled 65.3 million euros in 2024. This is followed by the areas of "Other power and storage technologies" with an increase of 30.3% to 40.5 million euros (increase of 9.1 million euros compared to 2023) and "Other cross-cutting technologies and research", where investments fell by 41.1% (decrease of 25.3 million euros). In addition to the thematically broad projects, these also include general energy-related basic research and analyses of the energy system. The subject areas of "Fossil energy" (4.7 million euros) and "Nuclear fission and fusion" (1.2 million euros, primarily fusion research within the European framework) are also comparatively far behind in terms of funding in 2024 and continue to have no priority in publicly funded energy research in Austria. The IEA also includes more general issues relating to combustion and conversion technologies as well as CO2 capture and storage (CCS) under "Fossil energy". The distribution according to the seven overarching topic areas is shown for 2024 in Figure 2 and over time in Figure 3. The development compared to the previous year is illustrated in Table 1.

Figure 2: Public energy R&D expenditures in Austria in 2024 – Topics according to IEA Code

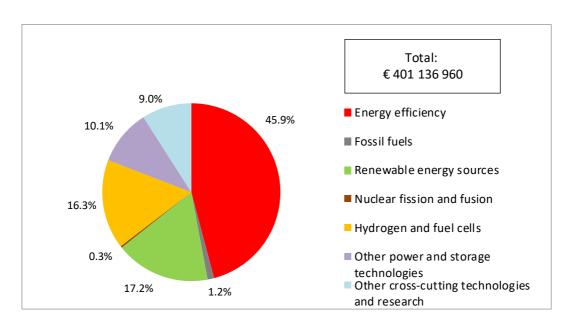


Figure 3: Public energy R&D expenditures in Austria 2020 to 2024 – Topics according to IEA Code

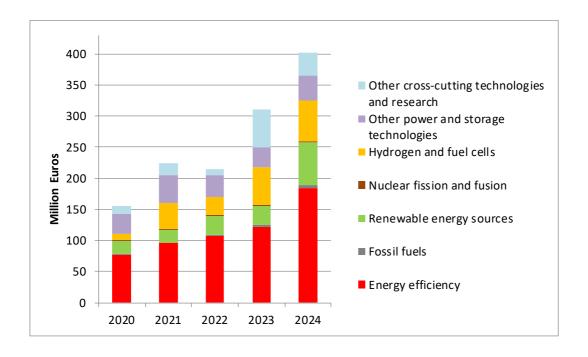


Table 1: Changes compared to 2023 – Topics according to IEA Code (2024)

Topics according to IEA Code	Expenditures 2024 in euros	Changes compared to 2023 in euros	Changes compared to 2023 in per cent
Energy efficiency	184,050,222	62,533,921	51.5%
Fossil fuels	4,722,777	773,731	19.6%
Renewable energy sources	69,135,703	39,384,746	132.4%
Nuclear fission and fusion	1,156,155	-235,156	-16.9%
Hydrogen and fuel cells	65,274,634	3,803,427	6.2%
Other power and storage technologies	40,531,688	9,414,949	30.3%
Other cross-cutting technologies and research	36,265,781	-25,309,150	-41.1%
Total	401,136,960	90,366,468	29.1%

The ten sub-categories with the highest expenditure on research, development and initial demonstration in 2024 are listed in Table 2.

A detailed analysis and presentation by sub-category in the individual subject areas can be found in Section 4.

Table 2: Top ten subtopics 2024

Ranking	Subtopics [assigned IEA Code]	Expenditures 2024 (in million euros)
1	Hydrogen [51]	60,381,223
2	Energy efficiency in industry [11]	55,491,085
3	Cross-cutting energy efficiency [19]	47,822,930
4	Biofuels [34]	43,063,297
5	Hybrid and electric vehicles, storage, charging infrastructure [1311, 1312, 1314]	26,895,482
6	Storage technologies: electricity and heat; excluding hydrogen, storage in vehicles or portable devices [63]	22,034,368
7	Energy system analysis [71]	20,054,198
8	Energy-efficient buildings [121, 122, 129]	19,731,692
9	Electricity transmission and distribution [62]	14,227,214
10	Cross-cutting topics [73]	12,544,467

Nearly 80% of the expenditures presented in this report were directly financed by funding authorities (federal government, provinces and funds). The remainder came from research institutions (including universities) provided with equity capital from federal or provincial budgets (see next figure). Third party financing from industry or means from European programmes like Horizon Europe were not covered by this survey.

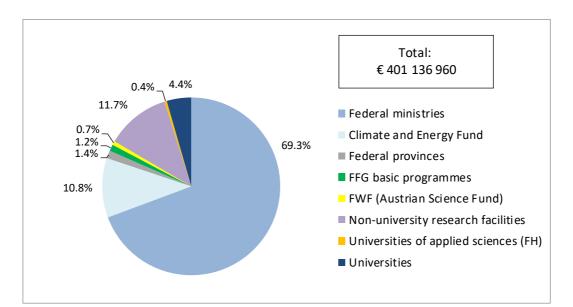


Figure 4: Public energy R&D expenditures in Austria – Institutions (2024)

FFG basic programmes: in 2024, 18.5 million euros of the basic programmes were allocated directly to the ministries.

Expenditures of federal ministries – either directly or via programmes within their fields of responsibility – totalled 278.1 million euros, with the former Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (BMK) investing 152.3 million euros of this amount. At the Climate and Energy Fund, expenditure on energy-related R&D fell by almost a third and totalled 43.4 million euros. The expenditure specified by the federal states for 2024 totalled 5.7 million euros, with Styria (1.8 million euros), Upper Austria (1.5 million euros) and Vienna (0.9 million euros) contributing the most.

The Austrian Research Promotion Agency (FFG) as the national funding agency for industrial research and development provided 4.72 million euros. The lower level compared to the years up to 2021 can be explained by the fact that projects from UG34 budget funds have been allocated directly to the BMK since 2022. So in 2024, 18.5 million euros of the basic programmes were allocated directly to the ministries. At 2.8 million euros, the Austrian Science Fund (FWF) only recorded around a tenth of the exceptionally high level of activity in the previous year.

The AIT and Silicon Austria Labs dominated the use of own funds in energy research at non-university research institutions with 26.8 and 18.4 million euros, respectively. Expenditure from the own funds of universities of applied sciences (called Fachhochschulen or FHs) increased slightly to 1.7 million euros in 2024. Eleven FHs reported activities here.

The universities' reported own resources expenditure rose slightly to 17.8 million euros. By far the highest expenditure came from TU Wien (12.9 million euros). A further six universities and the Institute of Science and Technology Austria (ISTA) also reported own funds.

Table 3: Changes compared to 2023 – Institutions (2024)

Institutions	Expenditures 2024 in euros	Changes compared to 2023 in euros	Changes compared to 2023 in per cent
Federal ministries	278,069,745	141,756,623	104.0%
Climate and Energy Fund	43,440,692	-18,889,941	-30.3%
Federal provinces	5,667,012	-4,119,469	-42.1%
FFG basic programmes*	4,736,041	-2,480,807	-34.4%
FWF (Austrian Science Fund)	2,844,536	-22,877,616	-88.9%
Non-university research facilities	46,847,264	-3,861,680	-7.6%
Universities of applied sciences	1,700,054	202,109	13.5%
Universities	17,831,616	637,249	3.7%
Total	401,136,960	90,366,468	29.1%

^{*} In 2024, 18.5 million euros of the basic programmes were allocated directly to the ministries.

400 Universities 350 Universities of applied 300 sciences (FH) ■ Non-university research 250 250 200 200 150 facilities FWF (Austrian Science Fund) ■ FFG basic programmes ■ Federal provinces 100 Climate and Energy Fund 50 ■ Federal ministries 0 2020 2021 2022 2023 2024

Figure 5: Public energy R&D expenditures in Austria – Institutions (2024)

FFG basic programmes: projects from UG34 budget funds have been allocated directly to federal ministries since 2022.

Around 1,350 projects and activities were recorded in 2024. 42.1% of the funds were used for applied research, while expenditure on experimental development accounted for 48.6%, a significantly higher proportion than in 2023 (28.9%). Investments in first-of-its-kind demonstration amounted to 6.1%, while those for energy-related research were 3.2% (see Figure 6).

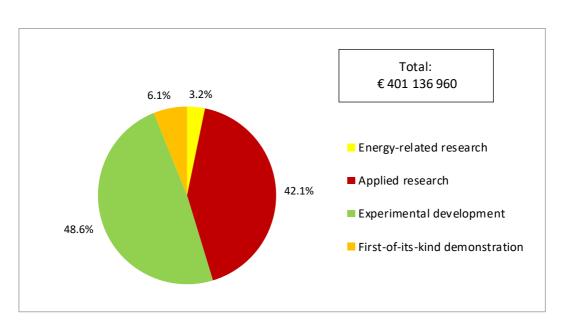


Figure 6: Areas of R&D 2024

The importance of energy research can also be measured by the share of a country's economic output, which is expressed as gross domestic product (GDP; see Figure 7). In 2024, the high increases in the energy sector led to a substantial rise to 0.083%. Further analyses can be found in Chapter 6.

Figure 7: Share of public energy R&D expenditures in the GDP, 2020 to 2024

Source GDP data: Statistics Austria

Gender-specific project data was also analysed for this report:

- In 167 out of 387 of the projects commissioned by or via the FFG in 2024, at least one woman holds a leading position in the consortium.
- In 2024, more projects were led by women than in previous years: 92 projects or almost one in four projects.
- On average, these female project managers were responsible for projects with a comparable funding value to their male colleagues, almost closing the gap for the first time.
- The proportion of women responsible for the technical coordination of an organisation in the consortium is 20.6%.
- The respective proportions vary greatly between the topics worked on and the funding programme lines.

3 Methode und Datenerhebung

3.1 Methode und Abgrenzung

Die in Österreich angewendete Methode der Erhebung der Energieforschungsausgaben der öffentlichen Hand orientiert sich seit Beginn der Erhebung (1977) an den Vorgaben der IEA und wurde dabei laufend weiterentwickelt. Seit dem Berichtsjahr 2011 wird von allen Mitgliedstaaten der IEA eine neue, einheitliche und detaillierte Erhebungsmethodik angewendet, die auch von Österreich als Mitglied voll umgesetzt wird (IEA 2011). Nicht erfasst – in Übereinstimmung mit den Vorgaben der IEA – werden Rückflüsse aus den Forschungsprogrammen der Europäischen Kommission wie Horizon Europe. Hier wird auf das EU-Performance-Monitoring der FFG verwiesen (eupm.ffg.at/ui/login/).

Die Ausgaben von Unternehmen fallen ebenfalls nicht unter die untersuchten Aktivitäten, diese wurden zuletzt für das Jahr 2021 von der Österreichischen Energieagentur analysiert (AEA 2024). OMV AG und Oesterreichs Energie stellen der Österreichischen Energieagentur dankenswerterweise jährlich die entsprechenden F&E-Ausgaben für diesen Bericht zur Verfügung. Diese Angaben sind nicht Teil der eigentlichen Erhebung und Auswertung und stimmen mit der Abgrenzung beziehungsweise Themenzuordnung der Erhebung nicht notwendigerweise überein. Eine Darstellung dieser Ausgaben findet sich in Kapitel 7.

Für diesen Bericht wurden wie auch im Vorjahr genderspezifische Projektdaten ausgewertet, die der Österreichischen Energieagentur von der FFG auf Ersuchen des BMIMI- zur Verfügung gestellt wurden. Hierzu gibt es keine methodischen Vorgaben der IEA. Die Ergebnisse sind in Kapitel 8 dargestellt und nicht Teil der Meldung an die IEA.

Die IEA hat sieben "Budgetstufen" definiert, in denen die Erfassung und Meldung erfolgen kann (siehe folgende Tabelle). Die Genauigkeit und Zuordenbarkeit zu einzelnen Themen nimmt mit jeder nächsthöheren Budgetstufe zu, allerdings stehen auch die jeweiligen Daten erst zu späteren Zeitpunkten zur Verfügung. In dieser Erhebung werden überwiegend vertraglich vereinbarte Verpflichtungen auf Projektebene erfasst (Budgetstufe 6), in Ausnahmefällen die tatsächlich ausbezahlten Summen (Budgetstufe 7). Andere Erhebungen in Österreich und im internationalen Bereich beleuchten oft Budgets, das heißt geplante beziehungsweise für Programme und Initiativen zur Verfügung stehende Mittel, laut den jeweiligen Bundesfinanzgesetzen ("GBAORD-Konzept" – Government Budget Appropriations Or Outlays on R&D, bis maximal Budgetstufe 5).

Die Ergebnisse aus Budgetbetrachtungen und aus tatsächlichen Projektvolumina sind erfahrungsgemäß kaum miteinander vergleichbar, insbesondere da viele Programme und Initiativen nicht eindeutig dem Energiebereich zugeordnet werden können, sondern breiter (zum

Beispiel Energie und Klima) oder themenoffen beziehungsweise bottom-up angelegt sind. Auch kann es zu einem Übertrag in ein anderes Berichtsjahr kommen, wenn die Vergaben beziehungsweise Vertragsunterzeichnungen nicht im selben Jahr stattfinden, in dem die Ausschreibung abgewickelt wurde. Auch der Grad der Mittelausschöpfung kann einen merkbaren Unterschied ausmachen.

Tabelle 4: Die sieben Budgetstufen bei IEA-Erhebungen (IEA 2011)

Budgetstufe	Bezeichnung	Beschreibung
1	Vorschau	Planung von Programmen et cetera
2	Budgetvorschau	Beispielweise die von den Ministerien in den Budgetverhandlungen angeforderten Mittel
3	Budgetvorschlag	Vorschlag an den Nationalrat et cetera
4	Beschlossenes Budget	Beschluss durch den Nationalrat et cetera
5	Tatsächliches Budget	Inklusive weiterer beschlossener Änderungen im Laufe des Jahres
6	Verpflichtungen	Beispielsweise vertraglich zugesicherte Förderungen beziehungsweise Finanzierungen auf Projektebene
7	Tatsächlich ausbezahlte Finanzierungen	Abgeschlossene, abgerechnete und ausbezahlte Projekte

3.2 Art der Forschung

Die seit dem Berichtsjahr 2011 umgesetzte Erhebungsstruktur berücksichtigt vier Arten von Aktivitäten:

- Energiebezogene Grundlagenforschung
- Angewandte Forschung
- Experimentelle Entwicklung
- (Erstmalige) Demonstration

Das sogenannte "Frascati-Manual" (OECD 2015) teilt Forschung und experimentelle Entwicklung in die ersten drei genannten Forschungsarten ein. Bei der Grundlagenforschung ist – im Unterschied zur Definition im Frascati-Manual – bei Angaben an die IEA ein Energiebezug der Projekte erforderlich. Von der IEA werden diese drei Themen gesamthaft dargestellt und ausgewertet.

Demonstrationsprojekte, die laut Frascati-Manual nicht zu F&E gezählt werden dürfen, werden seit 2011 erhoben und von der IEA in ihren Auswertungen getrennt von F&E abgebildet. Für die Auswertungen und Darstellungen in diesem Bericht wurden die Demonstrationsprojekte mit den drei anderen Kategorien gemeinsam betrachtet.

Im Folgenden wird auf die für diese Erhebung verwendeten Definitionen beziehungsweise Abgrenzungen detailliert eingegangen. Diese Information wurde auch den an der Erhebung teilnehmenden Organisationen zur Verfügung gestellt.

3.2.1 Energiebezogene Grundlagenforschung

Die Grundlagenforschung bezeichnet üblicherweise die Durchführung von experimentellen oder theoretischen Arbeiten – und zwar primär, um neues Wissen zu generieren. Diese Arbeiten sind nicht auf eine konkrete Anwendung gerichtet. In Ergänzung zur Definition des Frascati-Manuals gilt für die Erhebung der IEA, dass die erfassten Forschungsarbeiten einen Energiebezug haben müssen: "... clearly oriented towards the development of energy-related technologies" (IEA 2011). Sollte der Bezug (der späteren Anwendung der Forschungsergebnisse) zu einer einzelnen Energietechnologie nicht möglich sein, steht dafür der Themenbereich 72 "Basic energy research that cannot be allocated to a specific category" zur Verfügung (siehe dazu Abschnitt 3.4).

Lehre und Ausbildung fallen nicht unter die Kategorien dieser Erhebung, Diplomarbeiten und Dissertationen jedoch schon, diese werden mit erhoben.

3.2.2 Angewandte Forschung

Darunter fällt die Durchführung von experimentellen oder theoretischen Arbeiten, ebenfalls um neues Wissen zu generieren. Diese Arbeiten zielen dabei aber hauptsächlich auf eine spezifische praktische Anwendung oder einen spezifischen praktischen Nutzen: "It is, however, directed primarily towards a specific, practical aim or objective" (IEA 2011).

Zu dieser Kategorie wird auch die (wissenschaftliche) Begleitung von Demonstrationsprojekten gezählt.

3.2.3 Experimentelle Entwicklung

Darunter versteht man systematische Arbeiten, welche die Erkenntnisse aus Forschung oder Praxis nutzen. Die Arbeiten zielen auf die Herstellung neuer Materialien, Produkte, Prozesse oder Dienstleistungen beziehungsweise auf deren erhebliche Verbesserung.

3.2.4 Erstmalige Demonstration

Darunter werden Prototypen nahe beziehungsweise in der marktüblichen Größenordnung verstanden, die zumeist im kommerziellen Betrieb gefahren werden. Kosten von Entwurf, Bau und Betrieb solcher Anlagen werden hier inkludiert. Diese Anlagen sollen zeigen, dass eine Technologie im Marktumfeld funktioniert, und auch technische, ökonomische beziehungsweise ökologische Informationen für Unternehmen, Investor:innen, Behörden, politische Entscheidungsträger:innen et cetera liefern. Nur die erste Anlage ihrer Art kann hier aufgezeichnet werden ("first-of-its-kind demonstration"), weitere Anlagen im Zuge einer Markteinführung sowie andere Maßnahmen zur Markteinführung beziehungsweise Marktdurchdringung werden nicht berücksichtigt.

Grundsätzlich muss zu der Kategorie der erstmaligen Demonstration angemerkt werden, dass eine Abgrenzung zu Prototypen und Pilotanlagen (die zur experimentellen Entwicklung zählen) in manchen Themenbereichen schwierig ist. Auch ist die Beurteilung, ob es sich um eine "erstmalige" Demonstration handelt, ebenfalls problematisch. Dies ist insbesondere bei internationalen Vergleichen zu berücksichtigen.

3.3 Aussendung und Datenschutz

Im Jänner 2025 wurden die zu befragenden Organisationen von der Österreichischen Energieagentur per E-Mail angeschrieben und gebeten, das beigefügte Datenblatt im Excel-Format auszufüllen und bis 12. März 2025 an die Österreichische Energieagentur elektronisch zurückzusenden.

Bei den Bundesministerien wurde der Fragebogen an folgende Ressorts (die im April 2025 umstrukturiert wurden) übermittelt:

- Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK)
- Bundesministerium f
 ür Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML)
- Bundesministerium f
 ür Bildung, Wissenschaft und Forschung (BMBWF)
- Bundesministerium f
 ür Arbeit und Wirtschaft (BMAW)

Die Bundesländer wurden über die Verbindungsstelle der Bundesländer kontaktiert. An den Universitäten und Fachhochschulen wurde der elektronische Fragebogen im Allgemeinen direkt an bekannte sowie potenzielle "energieforschende" Institute beziehungsweise Studiengänge gesandt. Anschließend wurden die ausständigen Daten insbesondere von jenen Akteuren, die in den Vorjahren Daten gemeldet hatten, telefonisch urgiert.

Abgefragt wurden Themen und Projekttitel von energierelevanten Forschungsvorhaben, die Themenbereichen zuzuordnen waren. Durch ein Drop-down-Menü wurde sichergestellt, dass nur tatsächlich existierende Kategorien eingesetzt wurden. Auch die Art der Forschung (vier Kategorien) wurde durch ein Drop-down-Menü ermittelt. Weiters wurde nach den Energieforschungsausgaben gefragt: Diese konnten je nach Art der Einrichtung in Form von Personenmonaten oder in Euro-Beträgen angegeben werden. Bei finanzierenden Stellen wurde die Auftragnehmerin (Organisation) abgefragt. Es wurde explizit darauf hingewiesen, dass genannte Projekttitel sowie organisationsbezogene Informationen lediglich für die Verifikation der Themenzuordnung dienen und nicht publiziert würden.

Sollten der Österreichischen Energieagentur personenbezogene Informationen übermittelt werden, stellt das eine widerrufbare Einwilligung zur Verarbeitung dieser Daten dar, die entsprechend den Vorgaben der Datenschutz-Grundverordnung und des Datenschutzgesetzes 2018 mit allen notwendigen Schutzmaßnahmen durchgeführt wird. Diese Daten werden nicht an Dritte weitergegeben und nicht in die im Projekt zu erarbeitenden Berichte eingearbeitet.

3.4 Die IEA-Erhebungsstruktur

Seit dem Berichtsjahr 2011 wird von allen Mitgliedstaaten der IEA eine neue, einheitliche und detaillierte Erhebungsmethodik angewendet, die auch von Österreich als Mitglied voll umgesetzt wird. Diese Methodik wurde von der IEA im Juni 2011 veröffentlicht (IEA 2011); hier sind auch die einzelnen Themenbereiche ausführlich definiert und voneinander abgegrenzt. Die Themenstruktur ist in englischer Sprache und in deutscher Übersetzung durch die Österreichische Energieagentur bei den Abschnitten "Themenbereiche englisch" und "Themenbereiche deutsche Übersetzung" angeführt.

In manchen Subkategorien findet sich die Kategorie "Other"/"Andere", die Themen umfasst, die durch die restliche Kategorisierung nicht einbezogen werden. Unter "Unallocated"/"Nicht zuordenbar" werden Projekte erfasst, die entweder nicht eindeutig sind oder mehr als einem Thema zuordenbar wären – diese Subkategorien haben immer an letzter Stelle eine "9" in der numerischen Bezeichnung.

Jedes Projekt kann – bedingt durch den Aufbau der Erhebung und der quantitativen Auswertung – unabhängig von Art und Größe nur einem Themenbereich zugeordnet werden. Falls ein Projekt mehrere Themenbereiche umfasst, wird nach dem folgenden Schema vorgegangen:

- Falls das Projekt einen klaren Schwerpunkt hat, wird es diesem Thema auf der untersten Ebene zugeordnet.
- Gibt es keinen klaren Schwerpunkt, wird die jeweilige Kategorie "Unallocated" in der bestmöglichen Zuordnung gewählt (zum Beispiel bei Energiespeicherfragestellungen nicht 69 "Unallocated other power and storage technologies", sondern 639 "Unallocated energy storage").
- Falls das gesamte Energiespektrum bearbeitet wird, stehen die Themen 71 "Energy system analysis" beziehungsweise 73 "Other" zur Verfügung. Letzteres wird auch gewählt, wenn zwei oder mehr Hauptkategorien ohne klare Schwerpunktsetzung betroffen sind (wie zum Beispiel Effizienz und gleichzeitig Erneuerbare in einem Projekt). Bei Grundlagenforschungsprojekten steht dafür die Kategorie 72 "Basic energy research that cannot be allocated to a specific category" zur Verfügung.

3.5 Rücklauf

Über eine zentrale Ansprechperson pro Universität oder bei manchen Instituten auf direktem Weg wurden 11 Universitäten kontaktiert, davon antworteten 10. Die Umfrage wurde breit angelegt, und es haben viele namhafte Institute im Bereich der Energieforschung geantwortet. Einige Institute – die auch im Bereich der Energieforschung tätig sind – wenden für Projekte in diesem Bereich keine Eigenmittel auf, sondern finanzieren diese ausschließlich über Drittmittel: Diese Institute werden in der Erhebung daher nicht berücksichtigt. Es wurden 19 Fachhochschulen über eine zentrale Ansprechperson pro Fachhochschule oder deren einzelne Institute direkt kontaktiert, davon antworteten 12 Studiengänge. Von den 20 kontaktierten Organisationen der außeruniversitären Forschung sandten 7 Daten. Bei den Rücklaufzahlen wurden keine Leermeldungen berücksichtigt.

Die – für eine für die Teilnehmer:innen nicht verpflichtende Befragung – vergleichsweise hohe Rücklaufquote wurde durch intensive Nachbetreuung (E-Mails, Telefonate) erreicht.

3.6 Verifikation und Umrechnung der Stunden in Kosten

Zunächst wurden die Dateneingänge verifiziert. Hierzu wurden die Projekttitel mit der getroffenen Themenbereichszuteilung der Befragten verglichen, hinsichtlich Plausibilität überprüft und in begründbaren Einzelfällen besser passenden Themen zugeordnet beziehungsweise nicht gewertet. Anschließend erfolgte bei den Universitäten und Fachhochschulen eine Umrechnung der angegebenen Personenmonate ("Personaleinsatz") in aufgewendete Kosten. Die Umrechnung fand über einen Umrechnungsschlüssel statt, der im Jahr 2001 in Abstimmung mit der Österreichischen Akademie der Wissenschaften festgelegt wurde. Die Umrechnungssätze wurden

 in Anlehnung an die Steigerung bei den Beamtengehältern – von 2023 auf 2024 um 9,43 % erhöht:

- Professor:innen, Dozent:innen, Assistent:innen (Professionals): 149.605 Euro pro Jahr
- Techniker:innen (Non-Professionals): 43.635 Euro pro Jahr
- Diplomand:innen, Dissertant:innen (Students): 31.167 Euro pro Jahr

Projektbezogene Investitionen größeren Umfangs wurden getrennt erhoben, die Kosten für die Benutzung der Infrastruktur sind üblicherweise als "Overhead" in den Umrechnungssätzen enthalten.

3.7 Weitere Quellen

Aus den Datenbanken der FFG wurden die relevanten Ausgaben aus vorbereiteten Auszügen erhoben. So konnte der Datenschutz bestmöglich gewährleistet werden.

Beim Österreichischen Wissenschaftsfonds FWF wurden alle vergebenen Projekte analysiert und anhand der vom FWF zur Verfügung gestellten Daten sowie der öffentlich zugänglichen Projektdatenbank den verschiedenen Themenbereichen zugeordnet.

Alle Ausgaben für die Jahre 1977 bis 2002, die in den Zeitreihen erkennbar sind, stammen aus den Berichten, die von Universitätsprofessor Dr. Gerhard Faninger erstellt wurden (siehe Verzeichnis der österreichischen Energieforschungserhebungen). Ab 2003 wurden die Ausgaben von der Österreichischen Energieagentur erhoben und verarbeitet.

3.8 Abgrenzung des Betrachtungszeitraums

Bei den meisten Förderstellen ist das Jahr der Vertragsvergabe für die Zuordnung zu einem Berichtsjahr relevant. Die Förderstellen wurden gebeten, die volle Projektsumme aller im jeweiligen Berichtsjahr vergebenen Aufträge und Förderungen anzugeben. Mehrjährige Projekte wurden dem Jahr der Vergabe zugeordnet (mit Ausnahme des Kompetenzzentren-Programms COMET; hier erfolgt von der FFG eine Meldung der jährlichen Finanzflüsse, das heißt Budgetstufe 7).

Dabei gibt es zwischen den Förderstellen Unterschiede, bedingt durch die verschiedenen Verfahrensarten und Förderbedingungen: Der FWF etwa nennt die im Betrachtungszeitraum (Kalenderjahr) bewilligten Projekte, ein Projektstart erfolgt in der Regel spätestens sechs Monate nach Bewilligung.

4 Themen im Detail

In diesem Kapitel wird die Verteilung der Ausgaben und die jeweilige zeitliche Entwicklung nach übergeordneten Themen und den Subkategorien ausgeführt.

4.1 Energieeffizienz

Das Thema Energieeffizienz stellt seit 2010 klar die erste Priorität der österreichischen Energieforschung dar. Im Jahr 2024 entfielen 45,9 % der Ausgaben für Forschung, Entwicklung und erstmalige Demonstration auf diesen Bereich, das sind 184,1 Millionen Euro. Innerhalb der Energieeffizienz entfielen 30,1 % auf den Subbereich "Industrie", gefolgt von 26,0 % nicht einem einzelnen Subthema zuordenbare Projekte sowie "Transport" mit 22,7 %. Der Bereich "Gebäude und Geräte" weist für 2024 11,3 % auf. Der Bereich "Andere Energieeffizienz" machte 9,9 % aus; dieser Bereich enthält urbane Fragestellungen zu Smart City, Wärmepumpen et cetera (siehe Abbildung 8).

Abbildung 8: Aufteilung nach Themenbereichen – Energieeffizienz (2024)

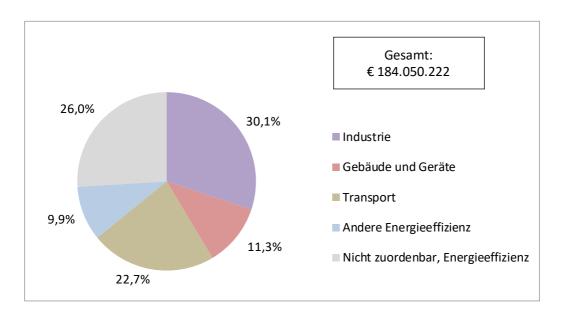
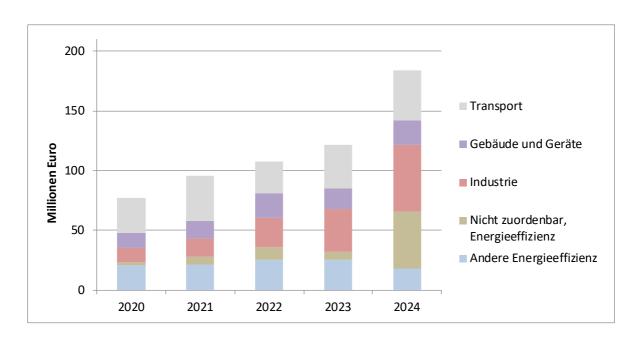



Tabelle 5: Aufteilung nach Institutionen – Energieeffizienz (2024)

Institution	Euro	Prozentanteil
Bundesministerien	120.844.708	66 %
KLIEN	21.906.515	12 %
Bundesländer	1.608.763	1 %
FFG-Basisprogramme	837.847	<1 %
FWF	797.190	<1 %
Außeruniversitäre Forschung	30.754.449	17 %
Fachhochschulen	906.996	<1 %
Universitäten	6.393.754	3 %
Gesamt	184.050.222	100 %

Abbildung 9 zeigt die Steigerungen der Ausgaben der letzten fünf Jahre, mit einer bemerkenswerten Zunahme des Industriesektors.

Abbildung 9: Entwicklung Energieforschungsausgaben – Energieeffizienz (2020 bis 2024)

4.1.1 Industrie

Dieser ausgabenstärkste Subbereich der Energieeffizienz konnte wie in den letzten vier Jahren eine Steigerung verzeichnen und kam im Jahr 2024 auf 55,5 Millionen Euro. Die Projekte wurden insbesondere aus Mitteln der Bundesministerien finanziert.

Tabelle 6: Aufteilung nach Institutionen – Industrie (2024)

Institution	Euro	Prozentanteil
Bundesministerien	38.603.467	70 %
KLIEN	8.166.094	15 %
Bundesländer	476.042	1 %
FFG-Basisprogramme	339.845	1 %
Außeruniversitäre Forschung	7.412.849	13 %
Fachhochschulen	36.017	<1 %
Universitäten	456.771	1 %
Summe	55.491.085	100 %

Tabelle 7: Aufteilung nach Themenbereichen – Industrie (2024)

Code	Thema	Euro
111	Industrielle Verfahren und Prozesse	19.568.224
112	Industrielle Anlagen und Systeme	3.482.782
113	Andere, Industrie	15.401
119	Nicht zuordenbar, Industrie	32.424.678
Summe	Industrie	55.491.085

4.1.2 Gebäude und Geräte

Die Bundesministerien stellen die wichtigste Finanzierungsquelle für diesen Subbereich dar, der sowohl die Gebäudehülle und Gebäudetechnik als auch geringer dotierte Aktivitäten bei der Effizienzverbesserung von Geräten in Haushalt, Büro und Gewerbe umfasst.

Tabelle 8: Aufteilung nach Institutionen – Gebäude und Geräte (2024)

Institution	Euro	Prozentanteil
Bundesministerien	12.815.445	62 %
KLIEN	2.173.935	10 %
Bundesländer	750.583	4 %
FFG-Basisprogramme	314.378	2 %
Außeruniversitäre Forschung	3.147.887	15 %
Fachhochschulen	495.128	2 %
Universitäten	1.031.946	5 %
Summe	20.729.302	100 %

Tabelle 9: Aufteilung nach Themenbereichen – Gebäude und Geräte (2024)

Code	Thema	Euro
129	Nicht zuordenbar, Gebäude und Geräte	6.230.747
1211	Technologien der Gebäudehülle	1.868.569
1212	Planung und Design	1.381.299
1219	Nicht zuordenbar, Gebäudehülle und Planung	3.216.705
	Energiemanagementsysteme für Gebäude, Smart	
1221	Meters	2.331.500
1222	Beleuchtung	445.858
1223	Heizung, Kühlung und Klimatisierung	3.317.051
1224	Andere, Gebäudetechnik und Betrieb	522.594

Code	Thema	Euro
1229	Nicht zuordenbar, Gebäudetechnik und Betrieb	417.369
1231	Geräte	369.000
1232	Batterien für transportable Geräte	341.947
1233	Andere, Geräte	12.467
1239	Nicht zuordenbar, Geräte	274.196
Summe	Gebäude und Geräte	20.729.302

4.1.3 Transport

Die Aktivitäten zur Energieeffizienz im Transportbereich sind wie im Vorjahr gestiegen und erreichten im Jahr 2024 41,8 Millionen Euro. In diesem Subbereich (wie auch in der gesamten Energieforschung) spielen die Themen zu Hybrid- und Elektrofahrzeugen inklusive Speichertechnologie und Ladeinfrastruktur mit insgesamt 26,9 Millionen Euro im Jahr 2024 eine wichtige Rolle (Nummer 5 unter den Top Ten, siehe Tabelle 2). Die Produktion der Treibstoffe ist in diesem Subsektor nicht enthalten, Fragestellungen zur Speicherung in Fahrzeugen hingegen schon. Die Finanzierung erfolgte primär über die Bundesministerien sowie den Klima- und Energiefonds.

Tabelle 10: Aufteilung nach Institutionen – Transport (2024)

Institution	Euro	Prozentanteil
Bundesministerien	23.497.800	56 %
KLIEN	8.991.347	22 %
Bundesländer	68.199	<1 %
FFG-Basisprogramme	137.724	<1 %
FWF	797.190	2 %
Außeruniversitäre Forschung	6.053.643	14 %
Fachhochschulen	104.999	<1 %
Universitäten	2.167.399	5 %
Summe	41.818.301	100 %

Tabelle 11: Aufteilung nach Themenbereichen – Transport (2024)

Code	Thema	Euro
132	Bahn, Schiff, Luftfahrt	2.381.428
133	Andere, Transport	418.179
139	Nicht zuordenbar, Transport	4.287.866
1311	Fahrzeugbatterien, Speichertechnologien	7.501.396
1312	Leistungselektronik, Motoren und Systeme für elektrische Antriebe	12.521.690
1313	Verbrennungsmotoren	121.633
1314	Ladeinfrastruktur für Elektroautos	6.872.396
1315	Treibstoffverbrauch von Kraftfahrzeugen (ohne Wasserstoff)	25.326
1316	Materialien für Kraftfahrzeuge	10.372
1317	Andere, Kraftfahrzeuge	87.767
1319	Nicht zuordenbar, Kraftfahrzeuge	7.590.248
Summe	Transport	41.818.301

4.1.4 Andere Energieeffizienz

Wie bisher standen in diesem Subthemenbereich auch 2024 F&E und Demonstration im Bereich "Effiziente kommunale Dienstleistungen in Städten und Gemeinden" klar im Zentrum, und zwar mit 11,6 Millionen Euro. Insbesondere die Programme der Bundesministerien sorgten hier für ein hohes Investitionsniveau. Zahlreiche Aktivitäten des Bereichs "Smart Cities" fallen unter diese Kategorie. F&E zu Wärmepumpen und Kälteanlagen erhielten mit 3,3 Millionen Euro weniger Mittel als zuvor.

Tabelle 12: Aufteilung nach Institutionen – Andere Energieeffizienz (2024)

Institution	Euro	Prozentanteil
Bundesministerien	12.202.748	67 %

Institution	Euro	Prozentanteil
KLIEN	2.575.139	14 %
Bundesländer	279.919	2 %
Außeruniversitäre Forschung	740.311	4 %
Fachhochschulen	198.940	1 %
Universitäten	2.191.547	12 %
Summe	18.188.604	100 %

Tabelle 13: Aufteilung nach Themenbereichen – Andere Energieeffizienz (2024)

Code	Thema	Euro
141	Wärmerückgewinnung und -nutzung	1.005.944
142	Kommunale Dienstleistungen in Städten und Gemeinden (Fernwärme, Verkehrsleitsysteme et cetera)	11.645.427
143	Land- und Forstwirtschaft	652.746
144	Wärmepumpen und Kälteanlagen	3.303.041
145	Andere, Energieeffizienz	1.551.034
149	Nicht zuordenbar, andere Energieeffizienz	30.412
Summe	Andere Energieeffizienz	18.188.604

4.2 Fossile Energie

Obwohl fossile Energieträger keine Priorität in der öffentlich finanzierten Energieforschung in Österreich darstellen, erhöhten sich die Mittel für diesen Themenbereich im Jahr 2024 noch einmal – nach einer bereits sehr großen Steigerung im Vorjahr. Besonders stark wuchsen dabei die Ausgaben für CO₂-Abtrennung und -Speicherung, die primär vom Klima- und Energiefonds finanziert wurden. Wie bereits im Jahr zuvor wurden auch 2024 im Bereich "Kohle" keine Mittel der öffentlichen Hand aufgewendet (Abbildung 10 und Abbildung 11).

Abbildung 10: Aufteilung nach Themenbereichen – Fossile Energie (2024)

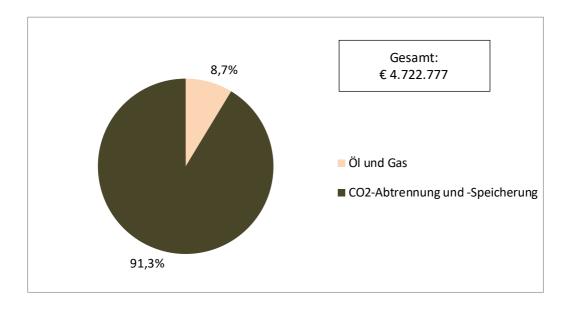


Tabelle 14: Aufteilung nach Institutionen – Fossile Energie (2024)

Institution	Euro	Prozentanteil
Bundesministerien	1.304.255	28 %
KLIEN	2.351.930	50 %
Außeruniversitäre Forschung	35.379	1 %
Universitäten	1.031.213	22 %
Summe	4.722.777	100 %

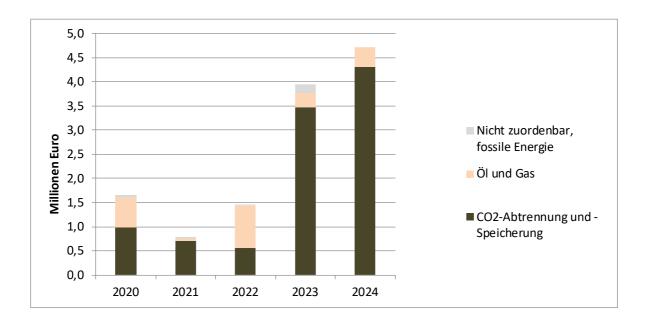


Abbildung 11: Entwicklung Energieforschungsausgaben – Fossile Energie (2020 bis 2024)

4.2.1 Öl und Gas

Im Sektor F&E für Öl und Gas wurden insbesondere zwei Projekte über die Basisprogramme der FFG finanziert (über eine dem BMK zugeordnete Budgetlinie, daher diesem Ressort zugeordnet).

Tabelle 15: Aufteilung nach Institutionen – Öl und Gas (2024)

Institution	Euro	Prozentanteil
Bundesministerien	325.394	80 %
Universitäten	83.858	20 %
Summe	409.252	100 %

Tabelle 16: Aufteilung nach Themenbereichen – Öl und Gas (2024)

Code	Thema	Euro
211	Verbesserte Förderung	11.220
213	Produktion von nicht-konventionellem Öl und Gas	148.271

Code	Thema	Euro
215	Umwandlung	249.761
Summe	Öl und Gas	409.252

4.2.2 CO₂-Abtrennung und -Speicherung

Aufgrund der themenüberschreitenden Fragestellungen wurde für 2024 der Großteil der Projektkosten nicht explizit einem der Themen zugeordnet.

Tabelle 17: Aufteilung nach Institutionen – CO₂-Abtrennung und -Speicherung (2024)

Institution	Euro	Prozentanteil
Bundesministerien	978.861	23 %
KLIEN	2.351.930	55 %
Außeruniversitäre Forschung	35.379	1 %
Universitäten	947.355	22 %
Summe	4.313.525	100 %

Tabelle 18: Aufteilung nach Themenbereichen – CO₂-Abtrennung und -Speicherung (2024)

Code	Thema	Euro
231	CO ₂ -Abtrennung	878.491
233	CO ₂ -Speicherung	195.704
239	Nicht zuordenbar, CO ₂ -Abtrennung und -Speicherung	3.239.330
Summe	CO ₂ -Abtrennung und -Speicherung	4.313.525

4.3 Erneuerbare Energie

Im Bereich "Erneuerbare Energie" gab es im Jahr 2024 eine erhebliche Steigerung, was besonders durch die verstärkte Investition in Bioenergie begründet ist. Auch die F&E-Kosten für Sonnenenergie und Windenergie stiegen verhältnismäßig stark an. Die Ausgaben bei der Geothermie und Wasserkraft gingen dagegen zurück (siehe Abbildung 12 und Abbildung 13).

Abbildung 12: Aufteilung nach Themenbereichen – Erneuerbare Energie (2024)

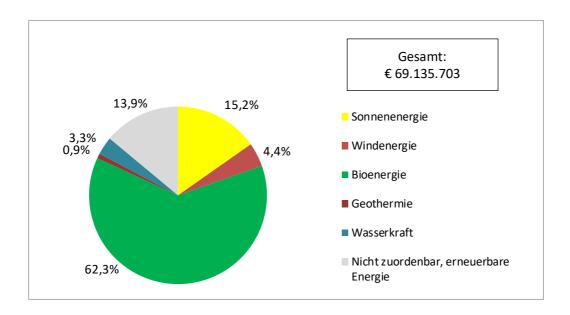
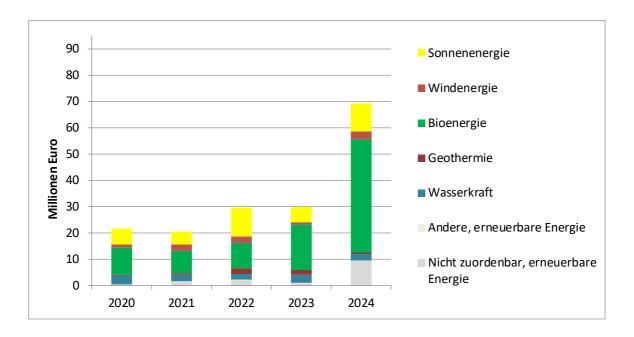



Tabelle 19: Aufteilung nach Institutionen – Erneuerbare Energie (2024)

Institution	Euro	Prozentanteil
Bundesministerien	56.668.321	82 %
KLIEN	5.132.305	7 %
Bundesländer	2.073.187	3 %
FFG-Basisprogramme	855.923	1 %
Außeruniversitäre Forschung	1.297.720	2 %
Fachhochschulen	70.293	<1 %
Universitäten	3.037.954	4 %

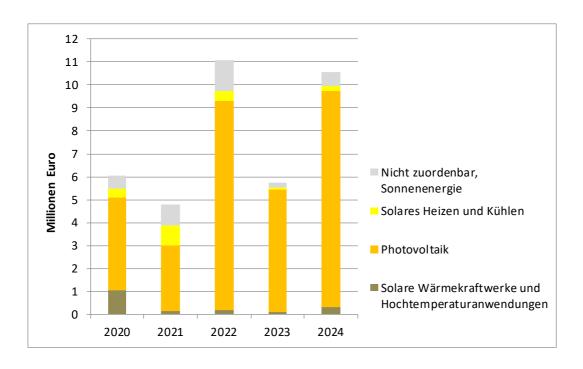
Institution	Euro	Prozentanteil
Summe	69.135.703	100 %

Abbildung 13: Entwicklung Energieforschungsausgaben – Erneuerbare Energie (2020 bis 2024)

4.3.1 Sonnenenergie

Die Ausgaben für F&E bezüglich der energetischen Nutzung der Sonnenenergie verdoppelten sich verglichen mit dem Vorjahr. Die Anstiege betrafen dabei alle Bereiche: den hier dominierenden Subbereich Photovoltaik, aber auch solares Heizen und Kühlen sowie Hochtemperaturanwendungen.

Tabelle 20: Aufteilung nach Institutionen – Sonnenenergie (2024)


Institution	Euro	Prozentanteil
Bundesministerien	6.544.247	62 %
KLIEN	1.619.727	15 %
Bundesländer	224.787	2 %
FFG-Basisprogramme	66.162	1 %

Institution	Euro	Prozentanteil
Außeruniversitäre Forschung	383.246	4 %
Fachhochschulen	29.376	<1 %
Universitäten	1.674.576	16 %
Summe	10.542.121	100 %

Tabelle 21: Aufteilung nach Themenbereichen – Sonnenenergie (2024)

Code	Thema	Euro
311	Solares Heizen und Kühlen	235.895
312	Photovoltaik	9.396.446
313	Solare Wärmekraftwerke und Hochtemperaturanwendungen	318.974
319	Nicht zuordenbar, Sonnenenergie	590.806
Summe	Sonnenenergie	10.542.121

Abbildung 14: Entwicklung Energieforschungsausgaben – Sonnenenergie (2020 bis 2024)

4.3.2 Windenergie

Die F&E-Aktivitäten im Bereich "Windenergie" nahmen 2024 gegenüber dem sehr geringen Niveau des Vorjahres wieder deutlich zu und konnten mit einer Verdreifachung auch jenes von 2022 übertreffen. Da die Unternehmensstruktur in diesem Bereich besonders stark durch die Zulieferindustrie für Komponenten von Windkraftanlagen geprägt ist, werden die F&E-Ausgaben hier aber tendenziell unterschätzt. Viele Material- und Komponentenentwicklungen werden nicht als Energieforschung kategorisiert, obwohl der Einsatz dann – in manchen Fällen sogar überwiegend – in Windkraftwerken erfolgt (Materialien für Flügel, Generatoren et cetera).

Tabelle 22: Aufteilung nach Institutionen – Windenergie (2024)

Institution	Euro	Prozentanteil
Bundesministerien	1.806.813	60 %
KLIEN	576.306	19 %
Außeruniversitäre Forschung	539.239	18 %
Fachhochschulen	37.800	1 %
Universitäten	57.592	2 %
Summe	3.017.750	100 %

Tabelle 23: Aufteilung nach Themenbereichen – Windenergie (2024)

Code	Thema	Euro
321	Windtechnologien onshore	595.180
323	Windenergiesysteme und andere Technologien	1.880.953
329	Nicht zuordenbar, Windenergie	541.617
Summe	Windenergie	3.017.750

4.3.3 Meeresenergie

Wie in den Vorjahren liegt für 2024 nur eine Meldung über geringfügige Forschungsaktivitäten im Bereich "Meeresenergie" von der TU Wien vor (< 0,01 % des Bereichs "Erneuerbare Energie").

4.3.4 Bioenergie

Der Bereich "Bioenergie" hatte mit F&E-Ausgaben von 43,1 Millionen Euro im Jahr 2024 erneut eine erhebliche Steigerung, verglichen mit dem Jahr 2023 mit 17,4 Millionen Euro. Die Finanzierung erfolgte 2024 zu 88 % aus den Bundesministerien, aber auch die Eigenforschung an den Universitäten ist von Bedeutung.

Tabelle 24: Aufteilung nach Institutionen – Bioenergie (2024)

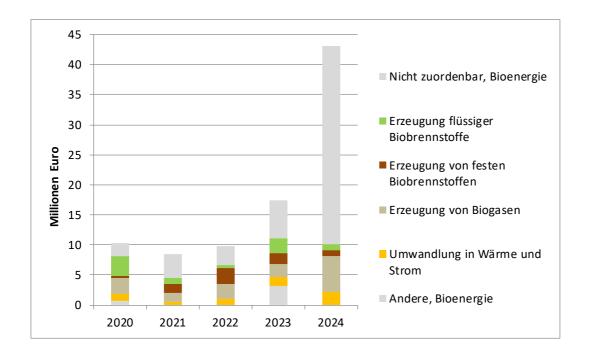

Institution	Euro	Prozentanteil
Bundesministerien	37.763.006	88 %
KLIEN	2.188.204	5 %
Bundesländer	1.800.000	4 %
FFG-Basisprogramme	530.337	1 %
Außeruniversitäre Forschung	169.965	<1 %
Fachhochschulen	3.117	<1 %
Universitäten	608.668	1 %
Summe	43.063.297	100 %

Tabelle 25: Aufteilung nach Themenbereichen – Bioenergie (2024)

Code	Thema	Euro
3411	Benzinersatz (inklusive Ethanol)	97.914
3412	Ersatz für Flugzeugtreibstoff, Diesel und Kerosin	787.537
3419	Nicht zuordenbar, Erzeugung flüssiger Biotreibstoffe	166.996
342	Erzeugung von festen Biobrennstoffen	981.494
3431	Thermochemische Verfahren	3.253.680
3432	Biochemische Verfahren (inklusive anaerober Prozesse)	996.313

Code	Thema	Euro
3433	Andere, Biogas	571.755
3439	Nicht zuordenbar, Biogas	1.116.635
344	Umwandlung in Wärme und Strom	2.156.488
345	Andere, Bioenergie	11.634
349	Nicht zuordenbar, Bioenergie	32.922.851
Summe	Bioenergie	43.063.297

Abbildung 15: Entwicklung der Energieforschungsausgaben – Bioenergie (2020 bis 2024)

4.3.5 Geothermie

Im Bereich Geothermie sanken die Ausgaben erneut erheblich von 1,7 auf 0,6 Millionen Euro. Der Klima- und Energiefonds hat zu diesem Thema im Gegensatz zum Vorjahr keine Projekte finanziert.

Tabelle 26: Aufteilung nach Institutionen – Geothermie (2024)

Institution	Euro	Prozentanteil
Bundesministerien	223.657	37 %
Bundesländer	48.400	8 %
Außeruniversitäre Forschung	118.429	20 %
Universitäten	207.611	35 %
Summe	598.097	100 %

Tabelle 27: Aufteilung nach Themenbereichen – Geothermie (2024)

Code	Thema	Euro
352	Hot Dry Rock	10.000
353	Weiterentwickeltes Bohren und Exploration	3.958
354	Andere, Geothermie (inklusive Niedertemperaturquellen)	242.043
359	Nicht zuordenbar, Geothermie	342.096
Summe	Geothermie	598.097

4.3.6 Wasserkraft

Die Ausgaben in diesem Bereich sanken gegenüber dem Vorjahr um rund 1 Million Euro und lagen 2024 bei 2,3 Millionen Euro. Hier sind es insbesondere Budgetlinien der Bundesministerien, die über die FFG abgewickelt werden.

Tabelle 28: Aufteilung nach Institutionen – Wasserkraft (2024)

Institution	Euro	Prozentanteil
Bundesministerien	1.028.695	45 %
KLIEN	498.460	22 %

Institution	Euro	Prozentanteil
FFG-Basisprogramme	259.424	11 %
Außeruniversitäre Forschung	918	0,04 %
Universitäten	489.341	21 %
Summe	2.276.838	100 %

Tabelle 29: Aufteilung nach Themenbereichen – Wasserkraft (2024)

Code	Thema	Euro
361	Große Wasserkraftwerke (Engpassleistung ab 10 MW)	129.900
362	Kleinwasserkraft (Engpassleistung unter 10 MW)	611.702
369	Nicht zuordenbar, Wasserkraft	1.535.236
Summe	Wasserkraft	2.276.838

4.4 Kernenergie

Im Themenbereich "Kernenergie" werden die F&E-Aktivitäten zur Kernspaltung und Kernfusion erfasst. Der Themenbereich hat keine Priorität in der öffentlich finanzierten Energieforschung in Österreich. Die Aufwendungen weisen bei diesen Themen eine hohe Konstanz der Akteure (Institute der Universitäten) auf, allerdings auf niedrigem Niveau. Der Schwerpunkt liegt dabei auf der Fusionsforschung (siehe Abbildung 16).

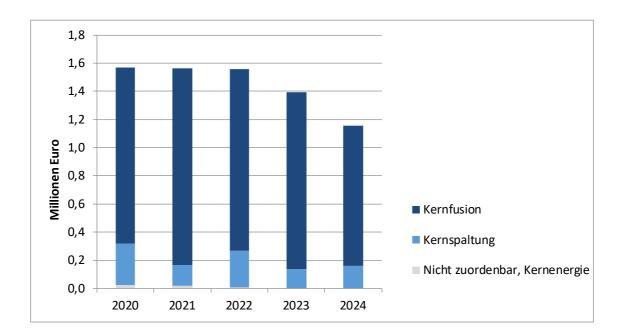


Abbildung 16: Entwicklung Energieforschungsausgaben – Kernenergie (2020 bis 2024)

4.4.1 Kernspaltung

Im Jahr 2024 gab es primär eigenfinanzierte Forschungsarbeiten an der Technischen Universität Wien mit dem Schwerpunkt Sicherheit.

Tabelle 30: Aufteilung nach Institutionen – Kernspaltung (2024)

Institution	Euro	Prozentanteil
Bundesländer	13.000	8 %
Fachhochschulen	11.387	7 %
Universitäten	130.300	84 %
Summe	154.687	100 %

Tabelle 31: Aufteilung nach Themenbereichen – Kernspaltung (2024)

Code	Thema	Euro
411	Leichtwasserreaktor (LWR)	6.500

Code	Thema	Euro
416	Andere, Kernspaltung	4.444
4141	Sicherheit	134.750
4142	Umweltschutz	2.493
4144	Andere, Begleittechnologien	6.500
Summe	Kernspaltung	154.687

4.4.2 Kernfusion

Die Österreichische Akademie der Wissenschaften (ÖAW) wurde vom Bundesministerium für Bildung, Wissenschaft und Forschung (BMBWF) beauftragt, die österreichischen Fusionsforschungsaktivitäten als Partnerorganisation des EUROfusion-Konsortiums zu koordinieren. Seit 2021 wird das europäische Fusionsforschungsprogramm im Rahmen der europäischen Kofinanzierungsregelung EUROfusion (Grant Agreement Number 101052200) im Rahmenprogramm Horizon Europe für Forschung und Innovation durchgeführt. Auf diese Kooperation entfällt der überwiegende Teil der F&E-Ausgaben im Bereich "Kernfusion" in Österreich. In den Meldungen für 2024 bilden die Kosten den eigenen Forschungseinsatz ab, die EU-Förderungen wurden – wie in allen anderen Bereichen dieser Erhebung auch – abgezogen. Die Ausgaben lagen im Bereich des Vorjahres, die Aktivitäten werden wie in den Vorjahren auch an vier Universitäten und der ÖAW durchgeführt.

Tabelle 32: Aufteilung nach Institutionen – Kernfusion (2024)

Institution	Euro	Prozentanteil
Bundesministerien	375.000	38 %
Außeruniversitäre Forschung	64.389	6 %
Universitäten	558.921	56 %
Summe	998.310	100 %

Tabelle 33: Aufteilung nach Themenbereichen – Kernfusion (2024)

Code	Thema	Euro
421	Magnetischer Einschluss	583.534
423	Andere, Kernfusion	37.112
429	Nicht zuordenbar, Kernfusion	377.664
Summe	Kernfusion	998.310

4.5 Wasserstoff und Brennstoffzellen

Die Ausgaben im Bereich "Wasserstoff und Brennstoffzellen" blieben im Jahr 2024 auf einem ähnlichen Niveau im Vergleich zum Vorjahr (65,3 Millionen Euro). Der Subbereich "Wasserstoff" deckte dabei mit 92,5 % den Großteil der Aktivitäten ab. Besonders werden die Ausgaben von den Bundesministerien, Bundesländern und Universitäten getätigt.

Abbildung 17: Aufteilung nach Themenbereichen – Wasserstoff und Brennstoffzellen (2024)

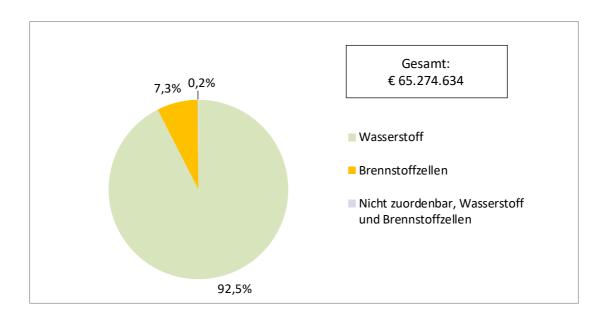
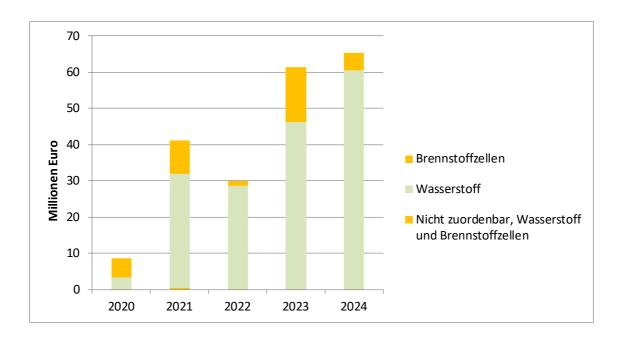



Tabelle 34: Aufteilung nach Institutionen – Wasserstoff und Brennstoffzellen (2024)

Institution	Euro	Prozentanteil
Bundesministerien	54.554.322	84 %
KLIEN	3.894.018	6 %
Bundesländer	682.048	1 %
FFG-Basisprogramme	722.513	1 %
Außeruniversitäre Forschung	1.708.684	3 %
Fachhochschulen	352.322	1 %
Universitäten	3.350.727	5 %
Summe	65.274.634	100 %

Abbildung 18: Entwicklung Energieforschungsausgaben – Wasserstoff und Brennstoffzellen (2020 bis 2024)

4.5.1 Wasserstoff

Die Ausgaben im Bereich "Wasserstoff" stiegen im Jahr 2024 auf 60,4 Millionen Euro. Die Finanzierung erfolgte überwiegend über die Bundesministerien. Sowohl die Erzeugung als auch die

Verteilung und der Einsatz von Wasserstoff sind hier abgedeckt, es gibt auch zahlreiche Projekte mit integrativem Ansatz.

Tabelle 35: Aufteilung nach Institutionen – Wasserstoff (2024)

Institution	Euro	Prozentanteil
Bundesministerien	51.563.341	85 %
KLIEN	2.907.460	5 %
Bundesländer	682.048	1 %
FFG-Basisprogramme	722.513	1 %
Außeruniversitäre Forschung	1.697.266	3 %
Fachhochschulen	339.855	1 %
Universitäten	2.468.740	4 %
Summe	60.381.223	100 %

Tabelle 36: Aufteilung nach Themenbereichen – Wasserstoff (2024)

Code	Thema	Euro
511	Erzeugung	10.267.575
512	Speicherung	1.745.896
513	Transport und Verteilung	122.536
514	Infrastruktur und Systeme	346.621
515	Verwendung (ohne Brennstoffzellen und Fahrzeuge)	2.522.069
519	Nicht zuordenbar, Wasserstoff	45.376.526
Summe	Wasserstoff	60.381.223

4.5.2 Brennstoffzellen

Im Subbereich "Brennstoffzellen" gingen die Mittel nach einem starken Anstieg auf 15,4 Millionen Euro im Jahr 2023 wieder stark zurück und erreichten im Jahr 2024 lediglich eine Höhe von 4,8 Millionen Euro, wobei die Finanzierung weiterhin primär über die Bundesministerien erfolgte.

Tabelle 37: Aufteilung nach Institutionen – Brennstoffzellen (2024)

Institution	Euro	Prozentanteil
Bundesministerien	2.990.981	62 %
KLIEN	986.558	21 %
Außeruniversitäre Forschung	3.318	<1 %
Fachhochschulen	12.467	<1 %
Universitäten	800.067	17 %
Summe	4.793.391	100 %

Tabelle 38: Aufteilung nach Themenbereichen – Brennstoffzellen (2024)

Code	Thema	Euro
521	Stationäre Anwendungen	1.743.177
522	Mobile Anwendungen	2.490.404
523	Andere Anwendungen	163.081
529	Nicht zuordenbar, Brennstoffzellen	396.729
Summe	Brennstoffzellen	4.793.391

4.6 Übertragung, Speicher und andere

Der IEA-Themenbereich "Übertragung, Speicher und andere" umfasst

• Anlagen zur Stromerzeugung, sofern sie nicht in anderen Bereichen enthalten sind, weiters

- die elektrische Übertragung und Verteilung sowie
- die Speichertechnologien für Strom und Wärme, sofern sie nicht den Transportbereich oder Wasserstoff betreffen.

Die Aktivitäten in diesem Themenbereich sind mit 40,5 Millionen Euro um 9,4 Millionen Euro über dem vorjährigen Niveau. Die Speicherung liegt mit 22,0 Millionen Euro voran (eine Verdoppelung gegenüber dem Vorjahr), gefolgt vom Subbereich "Elektrische Übertragung und Verteilung" mit 14,2 Millionen Euro.

Abbildung 19: Aufteilung nach Themenbereichen – Übertragung, Speicher und andere (2024)

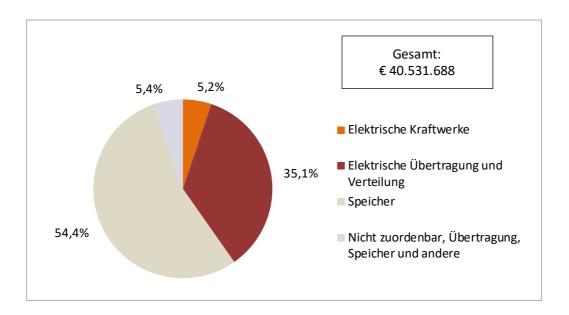
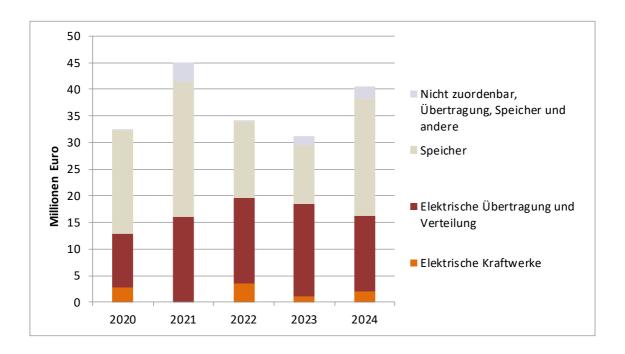



Tabelle 39: Aufteilung nach Institutionen – Übertragung, Speicher und andere (2024)

Institution	Euro	Prozentanteil
Bundesministerien	19.782.053	49 %
KLIEN	6.611.969	16 %
Bundesländer	777.534	2 %
FFG-Basisprogramme	1.797.507	4 %
Außeruniversitäre Forschung	9.516.488	24 %
Fachhochschulen	166.944	<1 %

Institution	Euro	Prozentanteil
Universitäten	1.879.193	5 %
Summe	40.531.688	100 %

Abbildung 20: Entwicklung Energieforschungsausgaben – Übertragung, Speicher und andere (2020 bis 2024)

4.6.1 Elektrische Kraftwerke

Im Jahr 2024 wurden für diesen Bereich Meldungen von 2,1 Millionen Euro abgegeben. Dies muss jedoch unter der Voraussetzung bewertet werden, dass bis auf Entwicklungen bei Generatoren alle Umwandlungstechnologien wie Kessel und Turbinen bei den jeweiligen Primärenergieträgern (Öl, Gas, Kohle, Biomasse, Wasserkraft et cetera) erfasst werden.

Tabelle 40: Aufteilung nach Institutionen – Elektrische Kraftwerke (2024)

Institution	Euro	Prozentanteil
Bundesministerien	983.252	47 %
KLIEN	105.217	5 %

Institution	Euro	Prozentanteil
Außeruniversitäre Forschung	972.348	46 %
Fachhochschulen	24.934	1 %
Universitäten	7.792	<1 %
Summe	2.093.543	100 %

Tabelle 41: Aufteilung nach Themenbereichen – Elektrische Kraftwerke (2024)

Code	Thema	Euro
611	Kraftwerkstechnologien	159.540
612	Hilfstechnologien	86.972
613	Andere, elektrische Kraftwerke	1.183.513
619	Nicht zuordenbar, elektrische Kraftwerke	663.518
Summe	Elektrische Kraftwerke	2.093.543

4.6.2 Elektrische Übertragung und Verteilung

Die Themen der Integration erneuerbarer Energieträger in das Stromsystem und Entwicklung von Smart-Grids sind in diesem Subthemenbereich verortet. Im Jahr 2024 sanken die Ausgaben leicht auf 14,2 Millionen Euro im Vergleich zum Vorjahr. Der Eigenmitteleinsatz insbesondere des AIT, aber auch der Silicon Austria Labs als Einrichtungen der außeruniversitären Forschung spielte dabei eine wichtige Rolle.

Tabelle 42: Aufteilung nach Institutionen – Elektrische Übertragung und Verteilung (2024)

Institution	Euro	Prozentanteil
Bundesministerien	4.188.156	29 %
KLIEN	1.401.454	10 %
Außeruniversitäre Forschung	7.547.037	53 %

Institution	Euro	Prozentanteil
Fachhochschulen	132.587	1 %
Universitäten	957.980	7 %
Summe	14.227.214	100 %

Tabelle 43: Aufteilung nach Themenbereichen – Elektrische Übertragung und Verteilung (2024)

Code	Thema	Euro
629	Nicht zuordenbar, elektrische Übertragung und Verteilung	1.164.944
6211	Kabel und Leitungen	894.020
6212	Wechselstrom/Gleichstrom-Umwandlung	3.066.368
6213	Andere Übertragungs- und Verteilungstechnologien	580.309
6219	Nicht zuordenbar, Übertragungs- und Verteilungstechnologien	3.172.831
6221	Last-Management (inklusive Integration erneuerbarer Energieträger)	2.757.377
6222	Überwachungssysteme	47.889
6223	Standards und Sicherheit	925.809
6229	Nicht zuordenbar, Netzbetrieb	1.617.667
Summe	Elektrische Übertragung und Verteilung	14.227.214

4.6.3 Speicher

Ausgaben für F&E bei Speichertechnologien stiegen nach dem Rückgang im wieder auf 22,0 Millionen Euro an. Batterien machten dabei knapp drei Viertel der Ausgaben aus. Das Thema der Energiespeicherung wird aber auch noch in anderen Kategorien behandelt, siehe hier auch Kategorie 1311 (Fahrzeugbatterien, Speichertechnologien in Fahrzeugen: 7,5 Millionen Euro im Jahr 2024) und Kategorie 512 (Speicherung von Wasserstoff: 1,7 Millionen Euro im Jahr 2024).

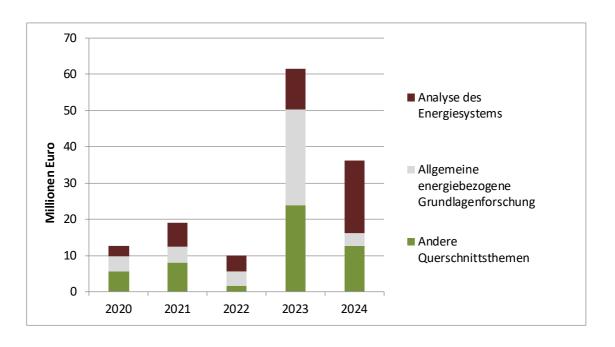
Tabelle 44: Aufteilung nach Institutionen – Speicher (2024)

Institution	Euro	Prozentanteil
Bundesministerien	14.610.645	66 %
KLIEN	5.105.298	23 %
Bundesländer	777.534	4 %
FFG-Basisprogramme	222.752	1 %
Außeruniversitäre Forschung	426.087	2 %
Fachhochschulen	9.423	<1 %
Universitäten	882.629	4 %
Summe Speicher	22.034.368	100 %

Tabelle 45: Aufteilung nach Themenbereichen – Speicher (2024)

Code	Thema	Euro
632	Wärmespeicher	4.546.255
639	Nicht zuordenbar, Speicher	1.228.420
6311	Batterien und andere elektrochemische Speicher für stationäre Anwendungen	15.344.305
6312	Elektromagnetische Speicher	32.176
6313	Kinetische Energiespeichertechnologien	182.471
6319	Nicht zuordenbar, elektrische Speicher	700.741
Summe	Speicher	22.034.368

4.7 Querschnittsthemen


Die unter dieser Kategorie erfassten Bereiche hatten nach dem Höchstwert im Jahr 2023 wieder große Rückgänge:

- Rund die Hälfte der Finanzierungen beim Subbereich "Analyse des Energiesystems" (2024: 20,1 Millionen Euro) erfolgten durch die Bundesministerien.
- Allgemeine energiebezogene Grundlagenforschung erhielt nur noch 3,7 Millionen Euro, was auf eine starke Verschiebung zu anderen Themen zurückzuführen ist. Dies umfasst Projekte, die nicht näher einem detaillierten Themenbereich dieser Erhebung zuordenbar sind. Die Aktivitäten wurden primär vom FWF finanziert.
- "Andere Querschnittsthemen" enthalten Themenstellungen, die mehr als einem Hauptthema zuzuordnen sind. Das Volumen betrug im Jahr 2024 12,5 Millionen Euro und wurde überwiegend von den Bundesministerien bereitgestellt.

Tabelle 46: Aufteilung nach Subkategorien – Querschnittsthemen (2024)

Code	Thema	Euro
71	Analyse des Energiesystems	20.054.198
72	Allgemeine energiebezogene Grundlagenforschung	3.667.116
73	Andere Querschnittsthemen	12.544.467
Summe	Querschnittsthemen	36.265.781

Abbildung 21: Entwicklung Energieforschungsausgaben – Querschnittsthemen (2020 bis 2024)

5 Institutionen im Detail

Die in diesem Bericht anschaulich gemachten Ausgaben der öffentlichen Hand für Energieforschung in Österreich beziehen sich wie bereits erwähnt auf Fördermittel beziehungsweise Forschungsaufträge

- der Bundesministerien,
- des Klima- und Energiefonds,
- der Bundesländer,
- der Österreichischen Forschungsförderungsgesellschaft (FFG),
- des Österreichischen Wissenschaftsfonds FWF,
- der Kommunalkredit Public Consulting (KPC) und
- des Austria Wirtschaftsservice (aws).

sowie auf die mit Bundes- und Landesmitteln finanzierte Eigenforschung an

- außeruniversitären Forschungseinrichtungen,
- Fachhochschulen und
- Universitätsinstituten.

83,5 % der in diesem Bericht dargestellten Ausgaben im Jahr 2024 sind direkte Finanzierungen durch Förderstellen (Bund, Länder, Fonds). Der verbleibende Anteil macht die mit Bundesbeziehungsweise Landesmitteln grundfinanzierte Eigenforschung durch sogenannte Eigenmittel an Universitäten, Fachhochschulen und außeruniversitären Forschungseinrichtungen aus.

5.1 Fördermittel und Forschungsaufträge

Die direkten Finanzierungen durch Bundesministerien und den Klima- und Energiefonds, Ämter der Landesregierungen sowie durch mit der Abwicklung von Förderungen beziehungsweise Forschungsprogrammen beauftragte Forschungsförderungseinrichtungen FFG, FWF, KPC und aws werden in diesem Abschnitt umfassend dargestellt. Weiters wird auch die Rolle der Nationalstiftung für Forschung, Technologie und Entwicklung kurz erklärt, die selbst keine Projekte vergibt, sondern Finanzmittel für andere forschende beziehungsweise abwickelnde Organisationen bereitstellt.

5.1.1 Bundesministerien

Die Bundesministerien stellten im Jahr 2024 mit 278,1 Millionen Euro erheblich mehr Mittel als im Vorjahr zur Verfügung – ein Plus von 150,8 Millionen Euro. Davon wurden 152,3 Millionen Euro dem Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK) zugeordnet. Das Bundesministerium für Arbeit und Wirtschaft (BMAW) stellte 94,0 Millionen Euro zur Verfügung. Die restlichen Mittel kamen vom Bundesministerium für Landwirtschaft, Regionen und Wasserwirtschaft (BML; 28,8 Millionen Euro), dem Bundesministerium für Bildung, Wissenschaft und Forschung (BMBWF; 1,4 Millionen Euro) und dem Finanzministerium (BMF; 1,6 Millionen Euro). Bei der Interpretation des Verlaufes der einzelnen Ministerien ist die Umstrukturierung 2022 zu beachten, die neue Ressortaufteilung im April 2025 ist für den Berichtszeitraum nicht relevant.

Die Ausgaben der Bundesministerien enthalten die von den Ressorts direkt vergebenen Projekte sowie auch Programme im jeweiligen Verantwortungsbereich, die von den Förderagenturen FFG, KPC und aws im Auftrag dieser Ressorts abgewickelt werden. Bei dieser Darstellung ist jedoch zu beachten, dass der Klima- und Energiefonds in dieser Erhebung als eigene Institution dargestellt wird und seine Ausgaben nicht in das BMK integriert werden. Auch werden die energiebezogenen Aufwendungen der FFG-Basisprogramme getrennt abgebildet, so die Projekte nicht aus einer Budgetlinie eines Bundesministeriums finanziert wurden.

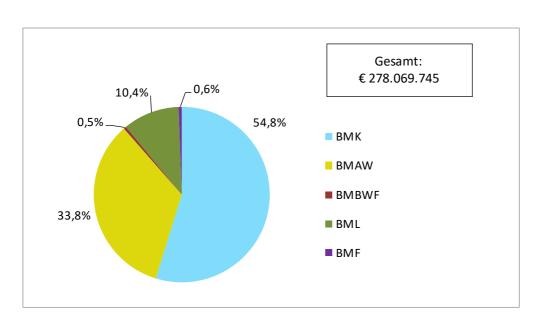


Abbildung 22: Aufteilung nach Themen -- Bundesministerien (2024)

Abbildung 23: Aufteilung nach Themen – Bundesministerien (2024)

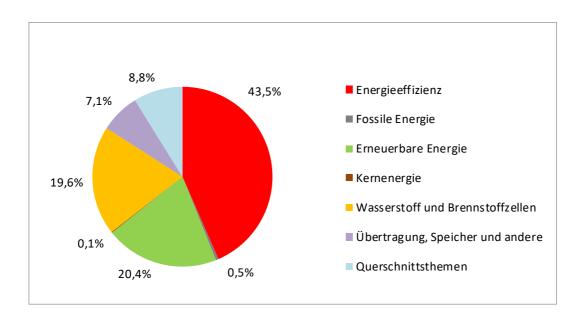
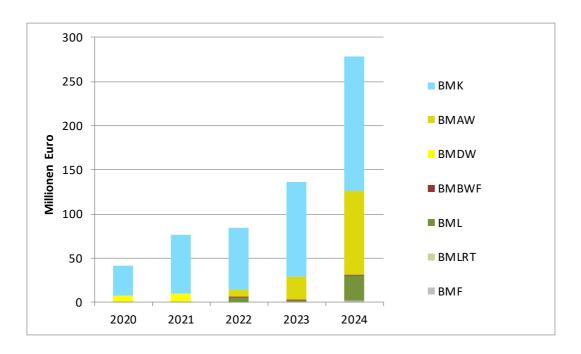



Abbildung 24: Entwicklung Energieforschungsausgaben der Bundesministerien (2020 bis 2024)

5.1.1.1 Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK)

Den Ausgaben des BMK wurden die von diesem Ressort beauftragten energieforschungsrelevanten Programme der FFG zugeordnet:

- Die thematischen Programme trugen 70,5 Millionen Euro bei, 46,3 Millionen Euro davon direkt aus dem Energiebereich. Programme aus anderen Bereichen wie Mobilität, digitale Technologien (inklusive Informations- und Kommunikationstechnologien), Produktionstechnologien sowie Weltraumforschung trugen 24,2 Millionen Euro bei, davon die themenübergreifende Ausschreibung zu Technologien und Innovationen für Digitaler Zwilling Österreich mit fast 2 Millionen Euro.
- Vorhaben des IPCEI (Important Projects of Common European Interest) Mikroelektronik II konnten im Jahr 2024 Projekte mit einem Vertragsvolumen von 19,4 Millionen Euro unterzeichnen.
- Von den FFG-Basisprogrammen (die nicht nur die klassischen Basisprogramme umsetzen, sondern auch andere Linien) wurden 23,2 Millionen Euro über eine Budgetlinie des BMK (UG34) finanziert.
- Strukturprogramme: Bei COMET werden konventionsgemäß nur die im Berichtsjahr ausbezahlten Beträge erfasst, nicht wie bei der Erfassung der FFG sonst üblich der gesamte Förderbarwert im Jahr des Vertragsabschlusses. Dem BMK werden hier 50 % zugeordnet, was 4,5 Millionen Euro im Jahr 2024 ausmachte. Weiters trugen noch Bridge, die F&E-Infrastrukturförderung, FEMtech Forschungsprojekte sowie industrienahe Dissertationen weitere 1,5 Millionen Euro bei.

Bei den FTI-Schwerpunkten des BMK ergab sich damit folgende Verteilung:

- Energiewende 73,2 Millionen Euro
- Ohne Zuordnung 61,1 Millionen Euro
- Klimaneutrale Stadt 12,2 Millionen Euro
- Kreislaufwirtschaft 8,0 Millionen Euro
- Mobilitätswende 7,4 Millionen Euro

Bei den über das aws finanzierten Projekten wurde dem BMK der Anteil des Ressorts aus Tätigkeiten der Programmlinien PreSeed GREEN und Seedfinancing Green zugerechnet (3,4 Millionen Euro). Vom aws werden auch Verträge zum IPCEI Wasserstoff abgewickelt. Diese an Forschung und Entwicklung (F&E) anschließenden Aktivitäten des "First Industrial Deployment" (FID, erste gewerbliche Nutzung zur Fertigung für spezielle Anwendungen) umfassten im Jahr 2024 Mittel in Höhe von 23,9 Millionen Euro. Projekte aus den IPCEI für Mikroelektronik und Kommunikationstechnologie wurden dabei zu 21 % dem BMK (und zu 79 % dem BMAW) zugeordnet, für Wasserstoff jeweils zur Hälfte dem BMK und dem BMAW.

Im Jahr 2024 wurden energieforschungsrelevante Projekte aus der betrieblichen Umweltförderung im Inland im Umfang von 5,4 Millionen Euro über die KPC finanziert.

Weiters wurden vom BMK auch Aufträge erfasst, die mit Eigenmitteln des Ressorts finanziert wurden (in Summe 0,5 Millionen Euro). Folgende Fachabteilungen nannten hier Aktivitäten:

- Abteilung III/3 Energie- und Umwelttechnologien
- Abteilung III/4 Mobilitäts- und Verkehrstechnologien

Abbildung 25: Aufteilung nach Themen – BMK (2024)

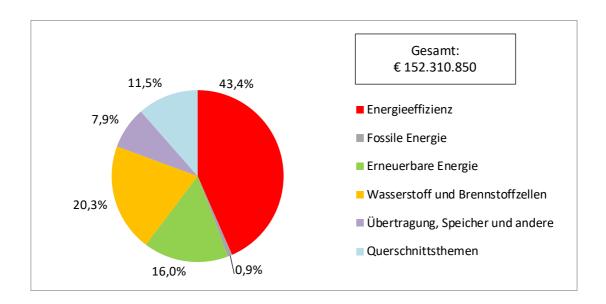


Tabelle 47: Aufteilung nach Themen – BMK (2024)

Code	Thema	Euro
11	Industrie	26.738.343
12	Gebäude und Geräte	10.749.755
13	Transport	11.638.966
14	Andere Energieeffizienz	9.308.168
19	Nicht zuordenbar, Energieeffizienz	7.718.843
Zwischensumme	Energieeffizienz	66.154.075
21	Öl und Gas	325.394
23	CO ₂ -Abtrennung und -Speicherung	978.861

Code	Thema	Euro
Zwischensumme	Fossile Energie	1.304.255
31	Sonnenenergie	5.167.852
32	Windenergie	1.806.813
34	Bioenergie	7.664.786
35	Geothermie	223.657
36	Wasserkraft	781.577
39	Nicht zuordenbar, erneuerbare Energie	8.715.641
Zwischensumme	Erneuerbare Energie	24.360.326
51	Wasserstoff	28.452.988
52	Brennstoffzellen	2.492.668
59	Nicht zuordenbar, Wasserstoff und Brennstoffzellen	10.000
Zwischensumme	Wasserstoff und Brennstoffzellen	30.955.656
61	Elektrische Kraftwerke	319.734
62	Elektrische Übertragung und Verteilung	3.458.411
63	Speicher	8.290.772
Zwischensumme	Übertragung, Speicher und andere	12.068.917
71	Analyse des Energiesystems	9.719.518
72	Allgemeine energiebezogene Grundlagenforschung	3.162.468
73	Andere Querschnittsthemen	4.585.635
Zwischensumme	Querschnittsthemen	17.467.621
Summe	ВМК	152.310.850

5.1.1.2 Bundesministerium für Arbeit und Wirtschaft (BMAW)

Die Ausgaben des BMAW von 94,0 Millionen Euro umfassten die Finanzierungen im Rahmen der Christian Doppler Forschungsgesellschaft von 1,7 Millionen Euro für acht Christian Doppler (CD)

Labors (eingerichtet an Universitäten und außeruniversitären Forschungseinrichtungen) und drei Josef Ressel Zentren (eingerichtet an Fachhochschulen). Hierbei wurden bei einem der CD-Labors auch Mittel der Österreichischen Nationalstiftung für Forschung, Technologie und Entwicklung (NFTE) eingesetzt, die für diese Erhebung ebenfalls dem BMAW zugerechnet werden.

Weiters wurden die folgenden vom BMAW beauftragten energieforschungsrelevanten Aktivitäten der FFG zugeordnet:

- Über die FFG-Basisprogramme wurden 17,8 Millionen Euro über eine Budgetlinie des BMAW (UG33) finanziert.
- Die Hälfte der Aufwendungen aus COMET (4,5 Millionen Euro) wurde dazugezählt.
- Die Programmlinie COIN-Aufbau (COIN: Cooperation & Innovation) zählte Aufwendungen von 4,7 Millionen Euro.
- Mittel für IPCEI Mikroelektronik II wurden zur Hälfte dem BMAW zugeordnet und betrugen 19,4 Millionen Euro.
- Die Programmlinie Eurostars 3 trug 1,4 Millionen Euro dazu bei.
- Human Potential und Life Sciences machten zusammen 0,9 Millionen Euro aus.

Von diesen Beträgen wurden insgesamt 19,3 Millionen Euro über die Transformationsoffensive finanziert (FFG sowie ein CD-Labor und ein Josef Ressel Zentrum).

Bei den über das aws finanzierten Projekten wurden dem BMAW mit 0,7 Millionen Euro der Anteil des Ressorts aus Tätigkeiten der Programmlinien PreeSeed zugerechnet sowie mit 42,7 Millionen Euro die Anteile der Aktivitäten zu den IPCEI für Mikroelektronik und Kommunikationstechnologie sowie Wasserstoff.

Abbildung 26: Aufteilung nach Themen – BMAW (2024)

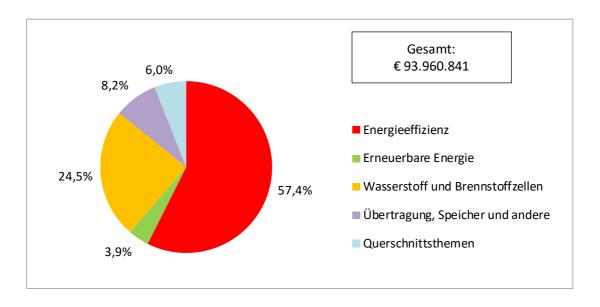


Tabelle 48: Aufteilung nach Themen – BMAW (2024)

Code	Thema	Euro
11	Industrie	11.537.393
12	Gebäude und Geräte	2.065.690
13	Transport	11.858.834
14	Andere Energieeffizienz	2.479.160
19	Nicht zuordenbar, Energieeffizienz	26.006.405
Zwischensumme	Energieeffizienz	53.947.482
31	Sonnenenergie	1.376.395
34	Bioenergie	1.458.670
36	Wasserkraft	247.118
39	Nicht zuordenbar, erneuerbare Energie	586.262
Zwischensumme	Erneuerbare Energie	3.668.445
51	Wasserstoff	23.010.357
Zwischensumme	Wasserstoff und Brennstoffzellen	23.010.357

Code	Thema	Euro
61	Elektrische Kraftwerke	663.518
62	Elektrische Übertragung und Verteilung	729.745
63	Speicher	6.319.873
Zwischensumme	Übertragung, Speicher und andere	7.713.136
71	Analyse des Energiesystems	480.109
73	Andere Querschnittsthemen	5.141.312
Zwischensumme	Querschnittsthemen	5.621.421
Summe	BMAW	93.960.841

5.1.1.3 Bundesministerium für Bildung, Wissenschaft und Forschung (BMBWF)

Das Bundesministerium für Bildung, Wissenschaft und Forschung (BMBWF) meldete eine Beauftragung der Österreichischen Akademie der Wissenschaft zu Koordination der österreichischen Fusionsforschungsaktivitäten mit 375.000 Euro. Über die FFG wurden Mittel über die Spin-off Fellowship zur Verfügung gestellt. Dem Wirkungskreis des BMBWF können der FWF sowie die Eigenmittelausstattung der Universitäten zugewiesen werden (in anderen Abschnitten dargestellt).

Abbildung 27: Aufteilung nach Themen – BMBWF (2024)

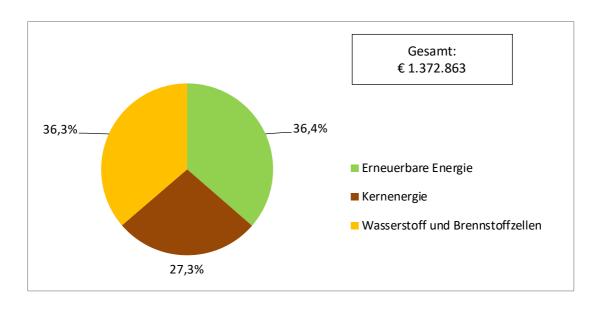


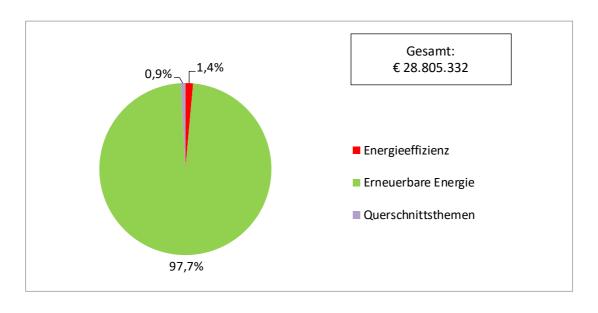
Tabelle 49: Aufteilung nach Themen – BMBWF (2024)

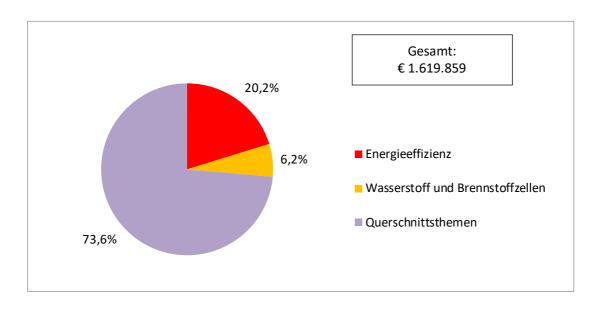
Code	Thema	Euro
34	Bioenergie	499.550
Zwischensumme	Erneuerbare Energie	499.550
42	Kernfusion	375.000
Zwischensumme	Kernenergie	375.000
52	Brennstoffzellen	498.313
Zwischensumme	Wasserstoff und Brennstoffzellen	498.313
Summe	BMBWF	1.372.863

5.1.1.4 Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML)

Die FFG wickelte für das Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML) in der Programmlinie THINK.WOOD Energie Projekte mit einem Volumen von 28 Millionen Euro ab. Dem BML wurden weiters die von diesem Ressort gemeldeten Beauftragungen zugeordnet.

Abbildung 28: Aufteilung nach Themen – BML (2024)




Tabelle 50: Aufteilung nach Themen – BML (2024)

Code	Thema	Euro
14	Andere Energieeffizienz	415.420
Zwischensumme	Energieeffizienz	415.420
34	Bioenergie	28.140.000
Zwischensumme	Erneuerbare Energie	28.140.000
73	Andere Querschnittsthemen	249.912
Zwischensumme	Querschnittsthemen	249.912
Summe	BML	28.805.332

5.1.1.5 Bundesministerium für Finanzen (BMF)

Im Jahr 2024 wurden über die FFG Projekte von 1,6 Millionen Euro über die dem BMF zugeordneten Programme der Sicherheits- und Verteidigungsforschung abgewickelt. Thematisch betraf dies vorwiegend Analysen des Energiesystems.

Abbildung 29: Aufteilung nach Themen – BMF (2024)

Code	Thema	Euro
11	Industrie	327.731
Zwischensumme	Energieeffizienz	327.731
51	Wasserstoff	99.996
Zwischensumme	Wasserstoff und Brennstoffzellen	99.996
71	Analyse des Energiesystems	1.192.132
Zwischensumme	Querschnittsthemen	1.192.132
Summe	ВМҒ	1.619.859

5.1.2 Klima- und Energiefonds (KLIEN)

Energieforschungsbezogene Ausgaben des Jahres 2024 fanden sich in folgenden über die FFG abgewickelten Programmlinien:

- Energieforschung (20,7 Millionen Euro)
- Zero Emission Mobility (9,0 Millionen Euro)
- Klimaneutrale Industrie (5,0 Millionen Euro)
- Austrian Climate Research Programme (2,9 Millionen Euro)
- Technologien und Innovationen für die klimaneutrale Stadt (2,7 Millionen Euro)
- Europäische und internationale Kooperationen (2,5 Millionen Euro)
- Technologiekooperationsprogramme in der IEA (0,2 Millionen Euro)

Im Jahr 2024 wurden von der KPC Projekte im Namen des Klima- und Energiefonds für die Vorzeigeregionen Green Energy Lab mit einem Volumen von 0,5 Millionen Euro beauftragt.

Dadurch erfolgte ein deutlicher Rückgang von 62,3 Millionen Euro im Jahr 2023 auf 43,4 Millionen Euro im Jahr 2024 und erreichte somit wieder das Niveau vom Jahr 2022. Bei diesen Zahlen ist zu berücksichtigen, dass in dieser Erhebung nur die energieforschungsrelevanten Aktivitäten des Klima- und Energiefonds erfasst werden, nicht jedoch die Themenbereiche Klimaforschung und Klimafolgenforschung und auch nicht die Unterstützung der Markteinführung.

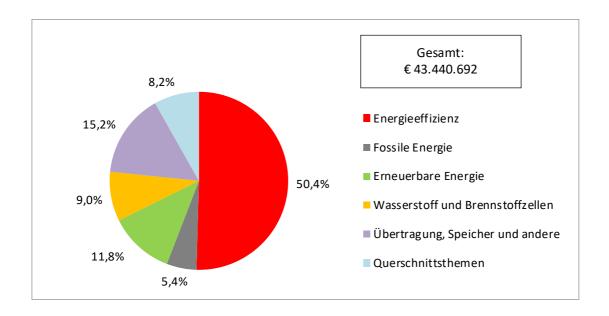
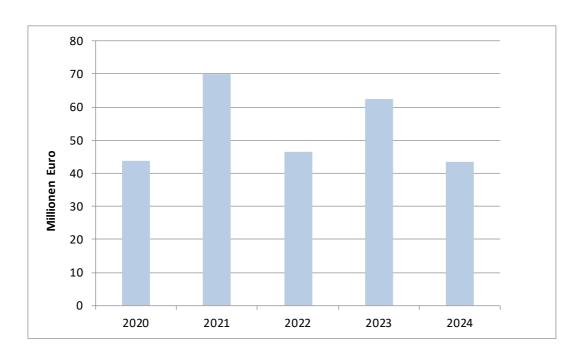



Tabelle 51: Aufteilung nach Themen – KLIEN (2024)

Code	Thema	Euro
11	Industrie	8.166.094
12	Gebäude und Geräte	2.173.935
13	Transport	8.991.347
14	Andere Energieeffizienz	2.575.139
Zwischensumme	Energieeffizienz	21.906.515
23	CO ₂ -Abtrennung und -Speicherung	2.351.930
Zwischensumme	Fossile Energie	2.351.930
31	Sonnenenergie	1.619.727
32	Windenergie	576.306
34	Bioenergie	2.188.204
36	Wasserkraft	498.460
39	Nicht zuordenbar, erneuerbare Energie	249.608

Code	Thema	Euro
Zwischensumme	Erneuerbare Energie	5.132.305
51	Wasserstoff	2.907.460
52	Brennstoffzellen	986.558
Zwischensumme	Wasserstoff und Brennstoffzellen	3.894.018
61	Elektrische Kraftwerke	105.217
62	Elektrische Übertragung und Verteilung	1.401.454
63	Speicher	5.105.298
Zwischensumme	Übertragung, Speicher und andere	6.611.969
71	Analyse des Energiesystems	2.698.609
73	Andere Querschnittsthemen	845.346
Zwischensumme	Querschnittsthemen	3.543.955
Summe	KLIEN	43.440.692

Tabelle 52: Entwicklung Energieforschungsausgaben – KLIEN (2020 bis 2024)

5.1.3 Bundesländer

Die von acht der neun Bundesländer für 2024 genannten Ausgaben betrugen 5,7 Millionen Euro, ein Rückgang im Vergleich zum Jahr 2022. Fast ein Drittel stellte dabei die Steiermark, gefolgt von Oberösterreich mit einem Viertel und Wien mit 16 %.

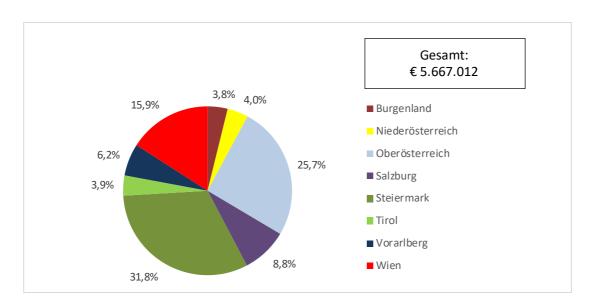
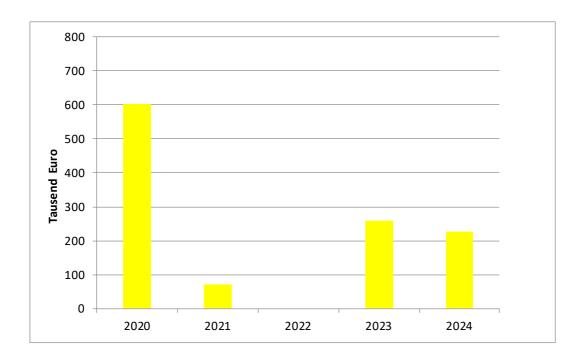


Abbildung 31: Energieforschungsausgaben der Bundesländer (2024)

5.1.3.1 Burgenland

Das Bundesland Burgenland meldete für das Jahr 2024 erstmals seit Jahren wieder Energieforschungsausgaben. Für 2024 wurden Mittel in Höhe von 217.619 Euro für den Bereich Energieeffizienz ausgegeben.


5.1.3.2 Kärnten

Das Bundesland Kärnten meldete für das Jahr 2024 keine Ausgaben im Bereich Energieforschung.

5.1.3.3 Niederösterreich

Niederösterreich hat für das Jahr 2024 Ausgaben von 227.716 Euro gemeldet, vollständig im Bereich Energieeffizienz.

Abbildung 32: Entwicklung Energieforschungsausgaben des Bundeslandes Niederösterreich (2020 bis 2024)

5.1.3.4 Oberösterreich

Oberösterreich hat für das Jahr 2024 deutlich geringere Ausgaben gemeldet. Diese sind von 7,0 Millionen Euro im Jahr 2023 auf 1,5 Millionen Euro gesunken. Der Rückgang ist dabei in allen Themengebieten aufgetreten.

Abbildung 33: Aufteilung nach Themen – Oberösterreich (2024)

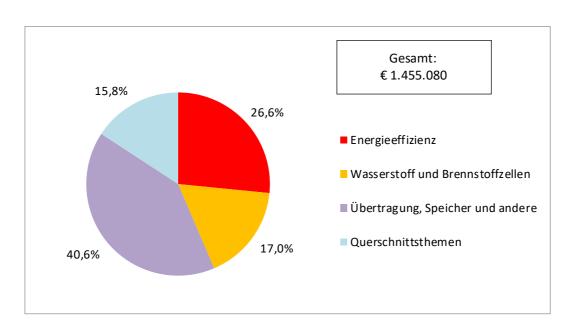
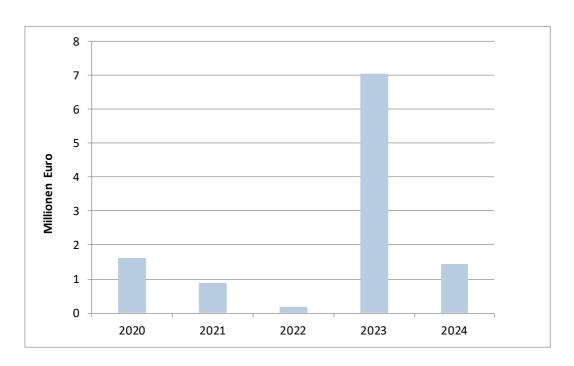



Tabelle 53: Aufteilung nach Themen – Oberösterreich (2024)

Code	Thema	Euro
11	Industrie	386.676
Zwischensumme	Energieeffizienz	386.676
51	Wasserstoff	247.315
Zwischensumme	Wasserstoff und Brennstoffzellen	247.315
63	Speicher	591.469
Zwischensumme	Übertragung, Speicher und andere	591.469
71	Analyse des Energiesystems	229.620
Zwischensumme	Querschnittsthemen	229.620
Gesamtsumme	Oberösterreich	1.455.080

Abbildung 34: Entwicklung Energieforschungsausgaben des Bundeslandes Oberösterreich (2020 bis 2024)

5.1.3.5 Salzburg

Das Bundesland Salzburg nannte für das Jahr 2024 Mittel von 496.625 Euro und setzte damit die kontinuierliche Erhöhung seit 2021 fort.

Abbildung 35: Aufteilung nach Themen – Salzburg (2024)

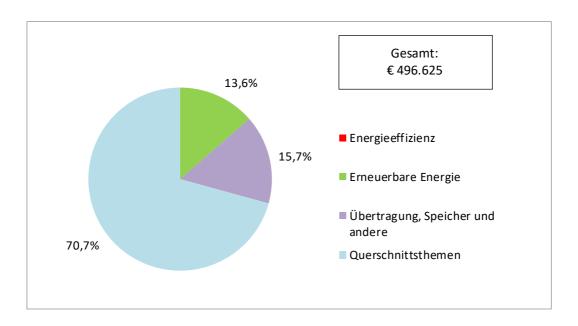
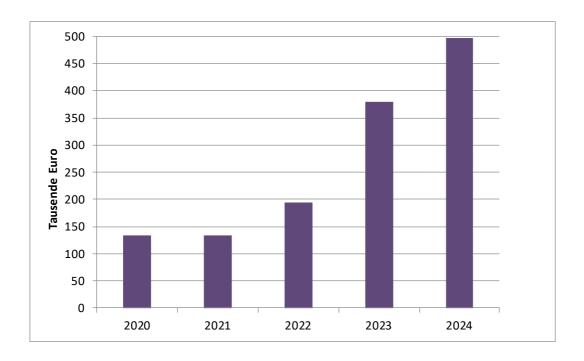
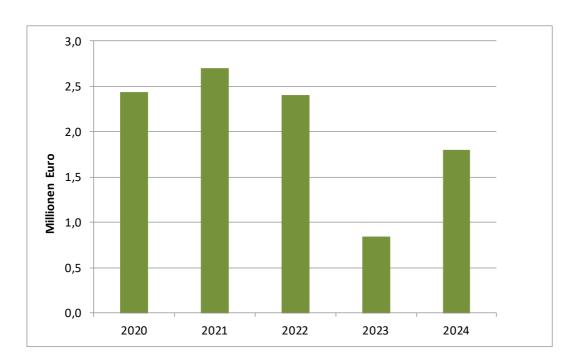



Tabelle 54: Aufteilung nach Themen – Salzburg (2024)

Code	Thema	Euro
12	Gebäude und Geräte	112.145
19	Nicht zuordenbar, Energieeffizienz	34.020
Zwischensumme	Energieeffizienz	146.165
31	Sonnenenergie	9.180
35	Geothermie	38.400
Zwischensumme	Erneuerbare Energie	47.580
63	Speicher	55.020
Zwischensumme	Übertragung, Speicher und andere	55.020
71	Analyse des Energiesystems	211.860

Code	Thema	Euro
73	Andere Querschnittsthemen	36.000
Zwischensumme	Querschnittsthemen	247.860
Summe	Salzburg	496.625


Abbildung 36: Entwicklung Energieforschungsausgaben des Bundeslandes Salzburg (2020 bis 2024)

5.1.3.6 Steiermark

Das Bundesland Steiermark meldete 1,8 Millionen Euro für das Jahr 2024, vollständig im Bereich der Forschung zu "Erneuerbare Energie". Damit stiegen die Ausgaben nach dem starken Rückgang im Vorjahr wieder an.

Abbildung 37: Entwicklung Energieforschungsausgaben des Bundeslandes Steiermark (2020 bis 2024)

5.1.3.7 Tirol

Das Bundesland Tirol meldete 219.523 Euro für das Jahr 2024. Die Ausgaben gingen zur Hälfte in den Bereich "Wasserstoff und Brennstoffzellen" und zur anderen Hälfte in den Bereich "Übertragung, Speicher und andere".

Abbildung 38: Aufteilung nach Themen – Tirol (2024)

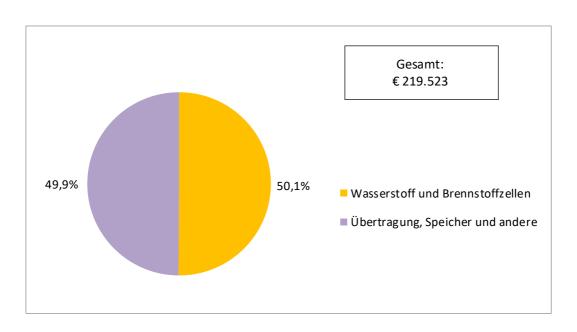


Tabelle 55: Aufteilung nach Themen – Tirol (2024)

Code	Thema	Euro
51	Wasserstoff	109.977
Zwischensumme	Wasserstoff und Brennstoffzellen	109.977
63	Speicher	109.546
Zwischensumme	Übertragung, Speicher und andere	109.546
Summe	Tirol	219.523

5.1.3.8 Vorarlberg

In den Daten des Bundeslandes Vorarlberg ist auch der energieforschungsrelevante Finanzierungsanteil für das Energieinstitut Vorarlberg enthalten. Die Ausgaben dieses Bundeslandes lagen mit 348.563 Euro etwas unter dem langjährigen Mittel. Mit 91,0 % wird der Großteil der F&E-Ausgaben für Energieeffizienz ausgegeben.

Abbildung 39: Aufteilung nach Themen – Vorarlberg (2024)

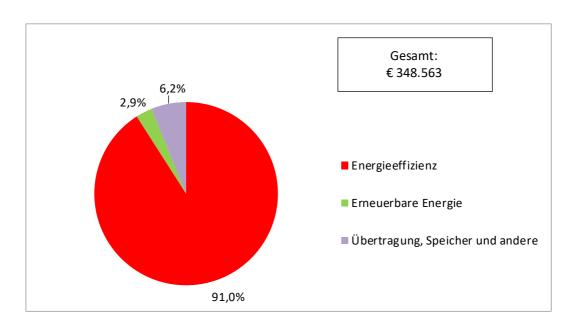
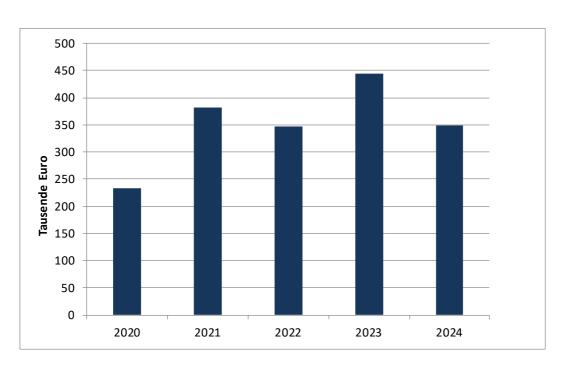



Tabelle 56: Aufteilung nach Themen – Vorarlberg (2024)

Code	Thema	Euro
12	Gebäude und Geräte	214.565
13	Transport	68.199
14	Andere Energieeffizienz	34.300
Zwischensumme	Energieeffizienz	317.064
35	Geothermie	10.000
Zwischensumme	Erneuerbare Energie	10.000
63	Speicher	21.499
Zwischensumme	Übertragung, Speicher und andere	21.499
Gesamtsumme	Vorarlberg	348.563

Abbildung 40: Entwicklung Energieforschungsausgaben des Bundeslandes Vorarlberg (2020 bis 2024)

5.1.3.9 Wien

Das Bundesland Wien wies nach dem Rückgang im Vorjahr wieder eine Steigerung auf 0,9 Millionen Euro für das Jahr 2024 auf. Thematisch wird auf "Energieeffizienz", "Erneuerbare Energie" und "Wasserstoff und Brennstoffzellen" fokussiert.

Abbildung 41: Aufteilung nach Themen – Wien (2024)

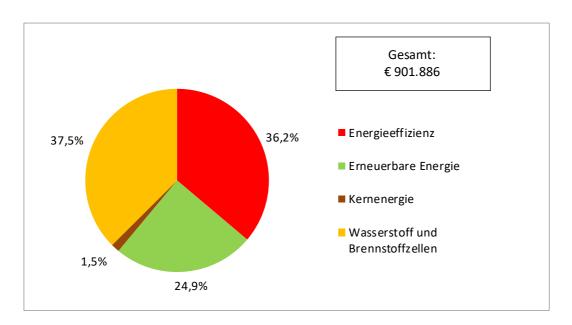
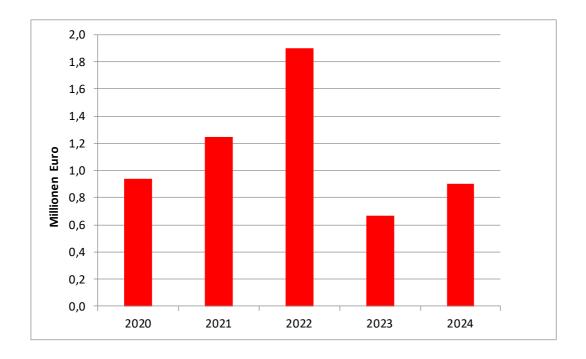



Tabelle 57: Aufteilung nach Themen – Wien (2024)

Code	Thema	Euro
11	Industrie	45.619
12	Gebäude und Geräte	239.904
14	Transport	28.000
Zwischensumme	Energieeffizienz	313.523
31	Sonnenenergie	215.607
Zwischensumme	Erneuerbare Energie	215.607
41	Kernspaltung	13.000
Zwischensumme	Kernenergie	13.000

Code	Thema	Euro
51	Wasserstoff	324.756
Zwischensumme	Wasserstoff und Brennstoffzellen	324.756
73	Andere Querschnittsthemen	35.000
Zwischensumme	Querschnittsthemen	35.000
Summe	Wien	901.886

Abbildung 42: Entwicklung Energieforschungsausgaben des Bundeslandes Wien (2020 bis 2024)

5.1.4 Forschungsförderungseinrichtungen

Der überwiegende Teil der von Bundesministerien bereitgestellten Mittel für die Finanzierung von Energieforschung wird über die nationalen Forschungsfördereinrichtungen abgewickelt. 2024 wurden auf diesem Weg 326,6 Millionen Euro für Projekte der Forschung, Entwicklung und erstmaligen Demonstration im Energiebereich bereitgestellt. Dies ist auch hier eine deutliche Steigerung gegenüber 2023, als das Volumen bei 231,1 Millionen Euro lag. Im Folgenden werden die nationalen Forschungsfördereinrichtungen FFG, FWF, KPC und aws getrennt beschrieben.

5.1.4.1 Forschungsförderungsgesellschaft (FFG) – Bereich Basisprogramme

Die Diagramme und Tabellen in diesem Abschnitt enthalten ausschließlich Projekte beziehungsweise Mittel aus dem Bereich Basisprogramme, sofern diese nicht im Auftrag von Bundesministerien beziehungsweise von den Bundesministerien in eindeutig zugeordneten Budgetlinien abgewickelt wurden. Die hier dargestellte Kategorie "FFG-Basisprogramme" trug im Jahr 2022 10,6 Millionen Euro bei, im Jahr 2023 sank der Betrag auf 7,2 Millionen Euro. Der starke Rückgang gegenüber den Jahren bis 2021 ist dadurch zu erklären, dass ab dem Berichtsjahr 2022 Projekte aus Budgetmitteln der UG34 dem BMK und aus jenen der UG33 dem BMAW zugeordnet wurden, obwohl sie über die Basisprogramme abgewickelt wurden. Für 2024 sank der Betrag weiter auf 4,7 Millionen Euro ab, 18,5 Millionen Euro der UG34 wurden direkt den Ministerien zugeordnet.

Die von den FFG-Bereichen "Thematische Programme" und "Strukturprogramme" für die Bundesministerien, den Klima- und Energiefonds (KLIEN) sowie für einzelne Bundesländer (2024: Oberösterreich und Tirol) abgewickelten Programme wurden ebenfalls bei der FFG direkt erhoben. Diese Ausgaben werden den jeweils zuständigen Ministerien, Bundesländern beziehungsweise dem Klima- und Energiefonds – die jeweils als Programmverantwortliche agieren und die Budgets zur Verfügung stellen – zugerechnet und auch dort dargestellt. 2024 wurden von der FFG im Energiebereich 246,8 Millionen Euro an neuen Förderungen und Finanzierungen vergeben. Die FFG ist damit wie auch in den letzten Jahren schon die zentrale Ansprech- beziehungsweise Abwicklungsstelle für Förderungen von F&E-Projekten im Energiebereich.

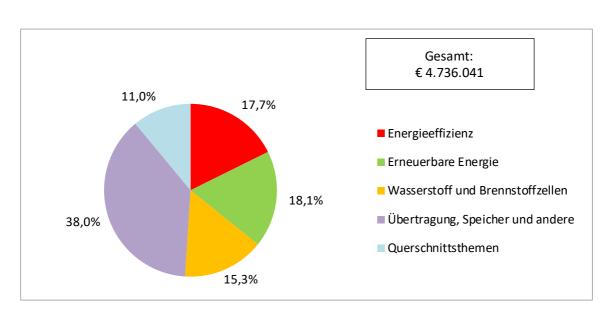
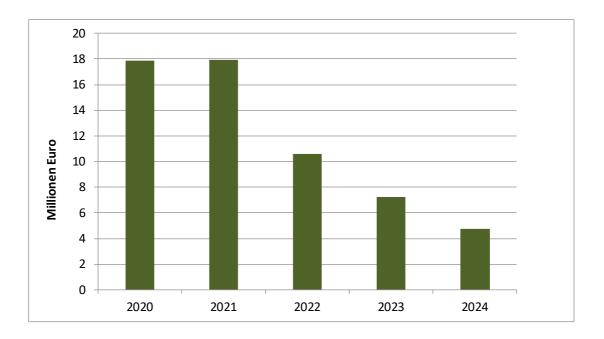



Abbildung 43: Aufteilung nach Themen – FFG (2024)

Tabelle 58: Aufteilung nach Themen – FFG-Basisprogramme (2024)

Code	Thema	Euro
11	Industrie	339.845
12	Gebäude und Geräte	314.378
13	Transport	137.724
19	Nicht zuordenbar, Energieeffizienz	45.900
Zwischensumme	Energieeffizienz	837.847
31	Sonnenenergie	66.162
34	Bioenergie	530.337
36	Wasserkraft	259.424
Zwischensumme	Erneuerbare Energie	855.923
71	Analyse des Energiesystems	522.251
Zwischensumme	Querschnittsthemen	522.251
63	Speicher	222.752
69	Nicht zuordenbar, Übertragung, Speicher und andere	1.574.755
Zwischensumme	Übertragung, Speicher und andere	1.797.507
51	Wasserstoff	722.513
Zwischensumme	Wasserstoff und Brennstoffzellen	722.513
Summe	FFG	4.736.041

Abbildung 44: Entwicklung Energieforschungsausgaben der Basisprogramme der FFG (2020 bis 2024)

5.1.4.2 Österreichischer Wissenschaftsfonds FWF

Der Österreichische Wissenschaftsfonds FWF hat 2024 mit 2,8 Millionen Euro nur ein Zehntel des Spitzenwerts des Vorjahres erreicht und fiel damit wieder auf das Niveau von 2020. Projekte können – auch den Programmen und Zielsetzungen des Wissenschaftsfonds entsprechend – hauptsächlich der allgemeinen energiebezogenen Grundlagenforschung zugeordnet werden. Der starke Rückgang gegenüber dem Vorjahr liegt dabei nicht an einer deutlich geringeren Zahl an Projekten, sondern an zwei im Jahr 2023 genehmigten, außergewöhnlich großen Projekten.

Abbildung 45: Aufteilung nach Themen – FWF (2024)

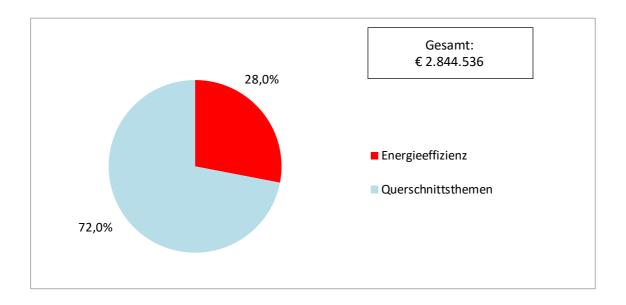


Tabelle 59: Aufteilung nach Themen – FWF (2024)

Code	Thema	Euro
13	Transport	797.190
Zwischensumme	Energieeffizienz	797.190
71	Analyse des Energiesystems	1.619.519
72	Allgemeine energiebezogene Grundlagenforschung	427.827
Zwischensumme	Querschnittsthemen	2.047.346
Summe	FWF	2.844.536

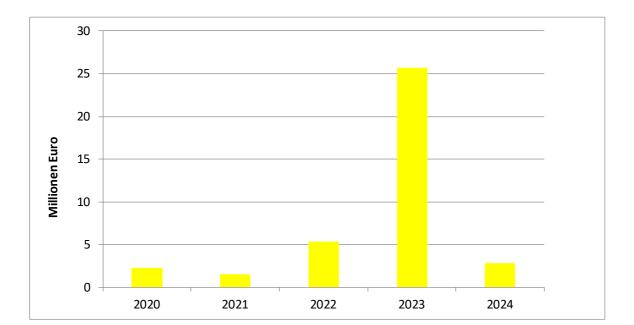


Abbildung 46: Entwicklung Energieforschungsausgaben des FWF (2020 bis 2024)

5.1.4.3 Kommunalkredit Public Consulting (KPC)

Im Berichtsjahr 2024 wurden von der KPC Beauftragungen für den Klima- und Energiefonds im Programm Vorzeigeregionen Green Energy Lab mit einem Förderbarwert von 0,5 Millionen Euro durchgeführt. Weiters wurden energierelevante Projekte aus der betrieblichen Umweltförderung im Inland (UFI) mit einer Gesamtsumme von 5,4 Millionen Euro abgewickelt. Diese Aktivitäten der Kommunalkredit Public Consulting KPC wurden dem BMK zugeordnet und betreffen wie die des Klima- und Energiefonds die Kategorie "Erstmalige Demonstration".

5.1.4.4 Austria Wirtschaftsservice (aws)

Basierend auf Gesetzen und Richtlinien setzt das aws eine Vielzahl an Produkten beziehungsweise Förderprogrammen zur Unterstützung von österreichischen Unternehmen ein. Das aws nannte 2024 energiebezogene F&E-Aufwendungen der Programmlinien Preseed GREEN und Seedfinancing GREEN (dem BMK zugeordnet) sowie preeseed (dem BMAW zugeordnet) im Ausmaß von 4,5 Millionen Euro.

Projekte aus den IPCEI für Mikroelektronik und Kommunikationstechnologie sowie Wasserstoff erhielten energieforschungsbezogene Aufwendungen in Höhe von 66,6 Millionen Euro, die dem BMAW (79 % bei Mikroelektronik und KT, 50 % bei Wasserstoff) und dem BMK zugeordnet wurden.

5.1.5 Nationalstiftung für Forschung, Technologie und Entwicklung (NFTE)

Dotiert aus den Mitteln des Bundes, der Österreichischen Nationalbank und des ERP-Fonds vergibt die Nationalstiftung für Forschung, Technologie und Entwicklung Fördermittel an vom Bund getragene Fördereinrichtungen. Die Ausschüttung erfolgt unter der Bezeichnung "Fonds Zukunft Österreich".

Aufgabe der Stiftung ist die Förderung von Forschung, Technologie und Entwicklung in Österreich, insbesondere langfristig verwertbarer, interdisziplinärer Forschungsmaßnahmen. Die energieforschungsrelevanten Anteile an den Stiftungsmitteln werden bei den Förderstellen direkt erhoben und dort integriert beschrieben. Im Energiebereich betraf dies im Jahr 2024 die Programmlinien beziehungsweise Ausschreibungen Digital Europe, Expedition Zukunft, Microelectronics2Market und Impact Innovation sowie eine finanzielle Beteiligung an einem der CD-Labors (abgewickelt über das BMAW) – in Summe 3,7 Millionen Euro.

5.2 Eigenforschung an Forschungseinrichtungen

In diesem Abschnitt wird die mit Bundes- und Landesmitteln finanzierte Eigenforschung an den jeweiligen Institutionen (außeruniversitäre Forschungseinrichtungen, Universitäten und Fachhochschulen) abgebildet. Es kann so kein umfassender Überblick über die Aktivitäten der jeweiligen Einrichtung gegeben werden, da Aufträge der Privatindustrie sowie über nationale Fördereinrichtungen finanzierte Vorhaben und EU-Projekte nicht enthalten sind. Ein Rückschluss auf die Größe sowie eine mögliche Schwerpunktsetzung der Institutionen ist somit nicht zulässig.

5.2.1 Außeruniversitäre Forschungseinrichtungen

Die sogenannten außeruniversitären Forschungseinrichtungen bilden einen wesentlichen und spezifischen Bestandteil des österreichischen Innovationssystems. Auch für die Energieforschung stellt dieser Sektor einen wichtigen Bereich mit einer Vielzahl von teilweise bereits lange aktiven Organisationen dar. Derzeit existiert keine akkordierte beziehungsweise offizielle Definition für diesen Sektor. Es gibt daher prinzipiell die Möglichkeit der Überschneidungen mit dem Hochschulbereichssektor, öffentlichen Sektor, gemeinnützigen Sektor und dem Unternehmenssektor. Ein grundsätzliches Merkmal außeruniversitärer Forschungseinrichtungen ist aber, dass getätigte Gewinne in die Kernaktivitäten (Forschung, weiter gefasst) "reinvestiert" oder für den Wissenstransfer eingesetzt werden.

In diesem Abschnitt sind keine temporär eingerichteten Forschungseinrichtungen wie Kompetenzzentren (COMET), CD-Labors oder Research-Studios aufgenommen. Die Finanzierung dieser Einrichtungen erfolgt überwiegend im Zuge von wettbewerbsorientierten Ausschreibungsverfahren spezifischer Programme. Diese Programme werden über die Erfassung bei der FFG registriert und den verantwortlichen Bundesministerien zugeordnet oder von diesen

direkt gemeldet. Die Steuerungsmöglichkeiten der öffentlichen Hand und der Anteil der hier erfassten Bundes- und Landesmittel am Umsatz der einzelnen Einrichtungen sind naturgemäß unterschiedlich. In diesem Bericht werden hierzu keine weiteren Aussagen getroffen.

Bei den außeruniversitären Forschungseinrichtungen kann das AIT Austrian Institute of Technology wie in den Jahren zuvor die meisten Eigenmittel im Energiebereich einsetzen. Seit 2021 aufgenommen in diesen Vergleich sind die Silicon Austria Labs (SAL), ein Spitzenforschungszentrum für elektronikbasierte Systeme. SAL hat Standorte in Graz, Linz und Villach.

Abbildung 47: Energieforschungsausgaben der außeruniversitären Forschungseinrichtungen (2024)

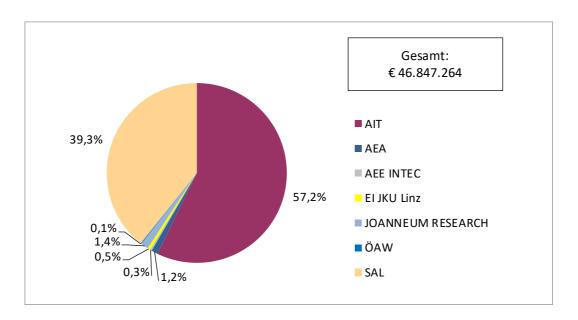


Abbildung 48: Aufteilung nach Themen – außeruniversitäre Forschungseinrichtungen (2024)

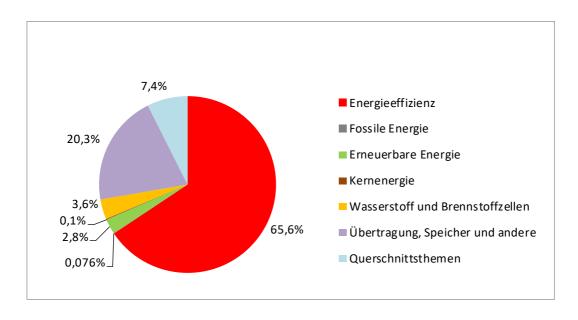
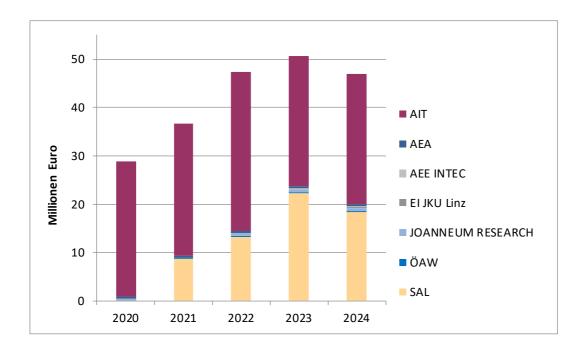



Abbildung 49: Energieforschungsausgaben der außeruniversitären Forschungseinrichtungen (2020 bis 2024)

5.2.1.1 Austrian Institute of Technology (AIT)

Im Jahr 2024 stellte das AIT 26,8 Millionen Euro an Eigenmitteln für Energieforschung zur Verfügung. Dieser Betrag ist damit leicht geringer als der vom Vorjahr mit 27,1 Millionen Euro.

Tabelle 60: Aufteilung nach Themen – AIT (2024)

Code	Thema	Euro
11	Industrie	4.184.233
12	Gebäude und Geräte	3.016.641
13	Transport	4.107.220
14	Andere Energieeffizienz	410.538
19	Nicht zuordenbar, Energieeffizienz	3.866.374
Zwischensumme	Energieeffizienz	15.585.006
23	CO ₂ -Abtrennung und -Speicherung	4.043
Zwischensumme	Fossile Energie	4.043
31	Sonnenenergie	224.437
32	Windenergie	16.089
35	Geothermie	118.429
36	Wasserkraft	918
39	Nicht zuordenbar, erneuerbare Energie	38.723
Zwischensumme	Erneuerbare Energie	398.596
51	Wasserstoff	1.625.205
59	Nicht zuordenbar, Wasserstoff und Brennstoffzellen	8.100
Zwischensumme	Wasserstoff und Brennstoffzellen	1.633.305
61	Elektrische Kraftwerke	942.959
62	Elektrische Übertragung und Verteilung	4.704.573
63	Speicher	252.755
69	Nicht zuordenbar, Übertragung, Speicher und andere	571.016
Zwischensumme	Übertragung, Speicher und andere	6.471.303

Code	Thema	Euro
71	Analyse des Energiesystems	1.682.295
73	Andere Querschnittsthemen	1.019.007
Zwischensumme	Querschnittsthemen	2.701.302
Summe	AIT	26.793.555

5.2.1.2 Österreichische Energieagentur – Austrian Energy Agency (AEA)

Abbildung 50: Aufteilung nach Themen – Österreichische Energieagentur (2024)

Code	Thema	Euro
11	Industrie	115.506
12	Gebäude und Geräte	25.735
13	Transport	21.597
14	Andere Energieeffizienz	1.464
19	Nicht zuordenbar, Energieeffizienz	15.617
Zwischensumme	Energieeffizienz	179.919
23	CO ₂ -Abtrennung und -Speicherung	3.592
Zwischensumme	Fossile Energie	3.592
31	Sonnenenergie	144
34	Bioenergie	50.518
39	Nicht zuordenbar, erneuerbare Energie	47.200
Zwischensumme	Erneuerbare Energie	97.862
51	Wasserstoff	21.195
52	Brennstoffzellen	3.318
Zwischensumme	Wasserstoff und Brennstoffzellen	24.513

Code	Thema	Euro
71	Analyse des Energiesystems	244.644
Zwischensumme	Querschnittsthemen	244.644
Summe	AEA	550.530

5.2.1.3 AEE – Institut für Nachhaltige Technologien (AEE INTEC)

Abbildung 51: Aufteilung nach Themen – AEE INTEC (2024)

Code	Thema	Euro
11	Industrie	14.000
12	Gebäude und Geräte	40.000
14	Andere Energieeffizienz	36.000
Zwischensumme	Energieeffizienz	90.000
31	Sonnenenergie	11.000
34	Bioenergie	33.000
Zwischensumme	Erneuerbare Energie	44.000
63	Speicher	16.000
Zwischensumme	Übertragung, Speicher und andere	16.000
Summe	AEE INTEC	150.000

5.2.1.4 Energieinstitut an der Johannes Kepler Universität Linz

Abbildung 52: Aufteilung nach Themen – EI JKU LINZ (2024)

Code	Thema	Euro
11	Industrie	39.305
14	Andere Energieeffizienz	13.872
Zwischensumme	Energieeffizienz	53.177
23	CO ₂ -Abtrennung und -Speicherung	27.744
Zwischensumme	Fossile Energie	27.744
34	Bioenergie	13.872
Zwischensumme	Erneuerbare Energie	13.872
51	Wasserstoff	50.866
Zwischensumme	Wasserstoff und Brennstoffzellen	50.866
71	Analyse des Energiesystems	85.546
Zwischensumme	Querschnittsthemen	85.546
Summe	EI JKU Linz	231.205

5.2.1.5 Joanneum Research Forschungsgesellschaft

Abbildung 53: Aufteilung nach Themen – Joanneum Research (2024)

Code	Thema	Euro
11	Industrie	22.990
12	Gebäude und Geräte	14.871
13	Transport	81.632
14	Andere Energieeffizienz	133.193

Code	Thema	Euro
Zwischensumme	Energieeffizienz	252.686
31	Sonnenenergie	147.665
34	Bioenergie	72.575
Zwischensumme	Erneuerbare Energie	220.240
62	Elektrische Übertragung und Verteilung	61.763
63	Speicher	858
Zwischensumme	Übertragung, Speicher und andere	62.621
71	Analyse des Energiesystems	7.602
73	Andere Querschnittsthemen	99.714
Zwischensumme	Querschnittsthemen	107.316
Summe	JOANNEUM RESEARCH	642.863

5.2.1.6 Österreichische Akademie der Wissenschaften (ÖAW)

Abbildung 54: Aufteilung nach Themen – Österreichische Akademie der Wissenschaften (2024)

Code	Thema	Euro
42	Kernfusion	64.389
Zwischensumme	Kernenergie	64.389
Summe	ÖAW	64.389

5.2.1.7 Silicon Austria Labs (SAL)

Die Silicon Austria Labs sind seit 2021 in dieser Erhebung vertreten. Der energierelevante Anteil der Eigenmittel von Bund und Ländern stieg von 8,8 Millionen Euro im Jahr 2021 auf 22,2 Millionen Euro im Jahr 2023. Für das Jahr 2024 wurden mit 18,4 Millionen Euro wieder weniger Ausgaben gemeldet.

Abbildung 55: Aufteilung nach Themen – Silicon Austria Labs (2024)

Code	Thema	Euro
11	Industrie	3.036.815
12	Gebäude und Geräte	50.640
13	Transport	1.843.194
14	Andere Energieeffizienz	145.244
19	Nicht zuordenbar, Energieeffizienz	9.517.768
Zwischensumme	Energieeffizienz	14.593.661
32	Windenergie	523.150
Zwischensumme	Erneuerbare Energie	523.150
61	Elektrische Kraftwerke	29.389
62	Elektrische Übertragung und Verteilung	2.780.701
63	Speicher	156.474
Zwischensumme	Übertragung, Speicher und andere	2.966.564
73	Andere Querschnittsthemen	331.347
Zwischensumme	Querschnittsthemen	331.347
Summe	SAL	18.414.722

5.2.2 Fachhochschulen

Fachhochschulen (FH) wurden 1994 als wissenschaftliche Berufsausbildung auf Hochschulniveau in Österreich eingeführt. Derzeit gibt es 21 Fachhochschulen. 12 Fachhochschulen nannten in den letzten fünf Jahren jeweils stark schwankende eigenmittelfinanzierte

Energieforschungsaktivitäten, 11 FHs meldeten für 2024 Aktivitäten von insgesamt 1,7 Millionen Euro. Das sind 200.000 Euro mehr als im Vorjahr.

Abbildung 56: Energieforschungsausgaben der Fachhochschulen (2024)

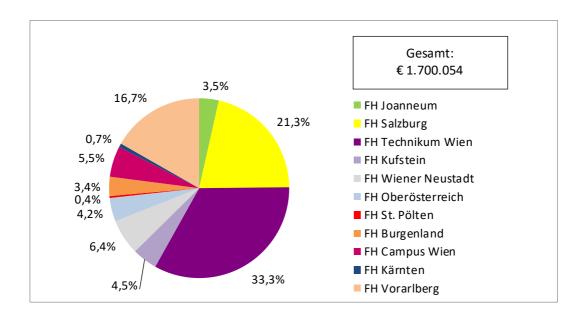


Abbildung 57: Aufteilung nach Themen – Fachhochschulen (2024)

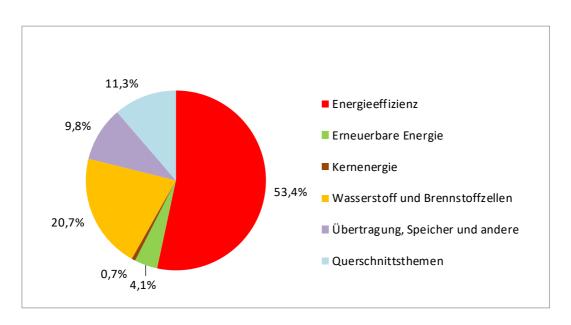
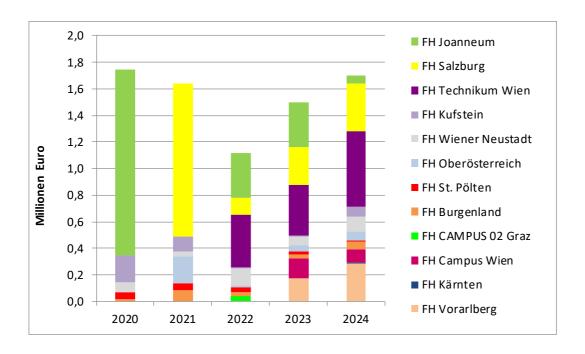



Abbildung 58: Entwicklung Energieforschungsausgaben der Fachhochschulen (2020 bis 2024)

5.2.2.1 Fachhochschule Joanneum

Tabelle 61: Aufteilung nach Themen – Fachhochschule Joanneum (2024)

Code	Thema	Euro
12	Gebäude und Geräte	18.077
13	Transport	6.634
Zwischensumme	Energieeffizienz	24.711
31	Sonnenenergie	29.376
Zwischensumme	Erneuerbare Energie	29.376
63	Speicher	5.735
Zwischensumme	Übertragung, Speicher und andere	5.735
Gesamtsumme	FH Joanneum	59.822

5.2.2.2 Fachhochschule Salzburg

Tabelle 62: Aufteilung nach Themen – Fachhochschule Salzburg (2024)

Code	Thema	Euro
12	Gebäude und Geräte	102.269
Zwischensumme	Energieeffizienz	102.269
51	Wasserstoff	260.098
Zwischensumme	Wasserstoff und Brennstoffzellen	260.098
Gesamtsumme	FH Salzburg	362.367

5.2.2.3 Fachhochschule Technikum Wien

Tabelle 63: Aufteilung nach Themen – Fachhochschule Technikum Wien (2024)

Code	Thema	Euro
12	Gebäude und Geräte	272.976
13	Transport	53.766
14	Andere Energieeffizienz	106.450
19	Nicht zuordenbar, Energieeffizienz	36.769
Zwischensumme	Energieeffizienz	469.961
32	Windenergie	37.800
Zwischensumme	Erneuerbare Energie	37.800
62	Elektrische Übertragung und Verteilung	41.328
Zwischensumme	Übertragung, Speicher und andere	41.328
71	Analyse des Energiesystems	16.475
Zwischensumme	Querschnittsthemen	16.475

Code	Thema	Euro
Summe	FH Technikum Wien	565.564

5.2.2.4 Fachhochschule Kufstein Tirol

Tabelle 64: Aufteilung nach Themen – Fachhochschule Kufstein Tirol (2024)

Code	Thema	Euro
12	Gebäude und Geräte	2.574
14	Andere Energieeffizienz	14.493
Zwischensumme	Energieeffizienz	17.067
51	Wasserstoff	26.752
52	Brennstoffzellen	12.467
Zwischensumme	Wasserstoff und Brennstoffzellen	39.219
73	Andere Querschnittsthemen	20.259
Zwischensumme	Querschnittsthemen	20.259
Gesamtsumme	FH Kufstein	76.545

5.2.2.5 Fachhochschule Wiener Neustadt

Tabelle 65: Aufteilung nach Themen – Fachhochschule Wiener Neustadt (2024)

Code	Thema	Euro
34	Bioenergie	3.117
Zwischensumme	Erneuerbare Energie	3.117

Code	Thema	Euro
Zwischensumme	Kernenergie	2.493
51	Wasserstoff	37.401
Zwischensumme	Wasserstoff und Brennstoffzellen	37.401
71	Analyse des Energiesystems	7.481
73	Andere Querschnittsthemen	58.570
Zwischensumme	Querschnittsthemen	66.051
Gesamtsumme	FH Wiener Neustadt	109.062

5.2.2.6 Fachhochschule Oberösterreich

Tabelle 66: Aufteilung nach Themen – Fachhochschule Oberösterreich (2024)

Code	Thema	Euro
11	Industrie	34.895
13	Transport	16.865
Zwischensumme	Energieeffizienz	51.760
41	Kernspaltung	8.894
Zwischensumme	Kernenergie	8.894
51	Wasserstoff	11.241
Zwischensumme	Wasserstoff und Brennstoffzellen	11.241
Gesamtsumme	FH Oberösterreich	71.895

5.2.2.7 Fachhochschule Sankt Pölten

Tabelle 67: Aufteilung nach Themen – Fachhochschule Sankt Pölten (2024)

Code	Thema	Euro
13	Transport	2.800
14	Andere Energieeffizienz	3.195
Zwischensumme	Energieeffizienz	5.995
Gesamtsumme	FH St. Pölten	5.995

5.2.2.8 Fachhochschule Burgenland

Tabelle 68: Aufteilung nach Themen – Fachhochschule Burgenland (2024)

Code	Thema	Euro
11	Industrie	1.122
12	Gebäude und Geräte	40.531
Zwischensumme	Energieeffizienz	41.653
62	Elektrische Übertragung und Verteilung	16.457
Zwischensumme	Übertragung, Speicher und andere	16.457
71	Analyse des Energiesystems	499
Zwischensumme	Querschnittsthemen	499
Gesamtsumme	FH Burgenland	58.609

5.2.2.9 Fachhochschule Campus Wien

Tabelle 69: Aufteilung nach Themen – Fachhochschule Campus Wien (2024)

Code	Thema	Euro
12	Gebäude und Geräte	58.701
19	Nicht zuordenbar, Energieeffizienz	35.143
Zwischensumme	Energieeffizienz	93.844
Gesamtsumme	FH Campus Wien	93.844

5.2.2.10Fachhochschule Kärnten

Tabelle 70: Aufteilung nach Themen – Fachhochschule Kärnten (2024)

Code	Thema	Euro
51	Wasserstoff	4.363
Zwischensumme	Wasserstoff und Brennstoffzellen	4.363
63	Speicher	3.688
Zwischensumme	Übertragung, Speicher und andere	3.688
71	Analyse des Energiesystems	3.636
Zwischensumme	Querschnittsthemen	3.636
Gesamtsumme	FH Kärnten	11.687

5.2.2.11Fachhochschule Vorarlberg

Tabelle 71: Aufteilung nach Themen – Fachhochschule Vorarlberg (2024)

Code	Thema	Euro
13	Transport	24.934
14	Andere Energieeffizienz	74.802
Zwischensumme	Energieeffizienz	99.736
61	Elektrische Kraftwerke	24.934
62	Elektrische Übertragung und Verteilung	74.802
Zwischensumme	Übertragung, Speicher und andere	99.736
71	Analyse des Energiesystems	42.596
73	Andere Querschnittsthemen	42.596
Zwischensumme	Querschnittsthemen	85.192
Gesamtsumme	FH Vorarlberg	284.664

5.2.3 Universitäten

Seit dem Wintersemester 2023/24 hat Österreich 23 Universitäten, davon 22 nach dem Universitätsgesetz (UG 2002) sowie in Linz das Institute of Digital Sciences Austria, die neue Universität mit Digitalisierungsschwerpunkt nach eigenem Sondergesetz. Von diesen 23 öffentlichen Universitäten nannten im Jahr 2024 sieben energieforschungsrelevante, mit Eigenmitteln finanzierte Ausgaben. In dieser Darstellung sind weiters Aktivitäten des ISTA (Institute of Science and Technology Austria) enthalten, das formal zwar keine Universität ist, aber als Forschungseinrichtung mit eigenem Promotionsrecht dem Hochschulsektor zugeordnet wird. In Summe ergibt sich hier ein energieforschungsbezogener Eigenmitteleinsatz von 17,8 Millionen Euro, was eine Steigerung um 0,6 Millionen Euro zum Jahr davor bedeutet.

Die von den Universitäten genannten Zahlen im Bereich EUROfusion wurden entsprechend der langjährigen Konvention durch die von der Österreichischen Akademie der Wissenschaften genannten Ausgaben dieser Institute im Rahmen der europäischen Kofinanzierungsregelung ersetzt (nur die national finanzierten Anteile).

In dieser Erhebung werden die Ausgaben nur auf der Ebene der einzelnen Universitäten sichtbar gemacht. Eine Liste der Institute, die Aktivitäten genannt haben, findet sich bei der jeweiligen Universität, soweit angegeben.

Weiters gibt es in Österreich 19 private Hochschulen, davon zwei Privathochschulen und 17 Privatuniversitäten. Da für die privaten Hochschulen eine Bundesfinanzierung grundsätzlich nicht vorgesehen ist, werden sie in diesem Bericht nicht erfasst. Die Pädagogischen Hochschulen werden ebenfalls nicht berücksichtigt.

Abbildung 59: Energieforschungsausgaben der Universitäten (2024)

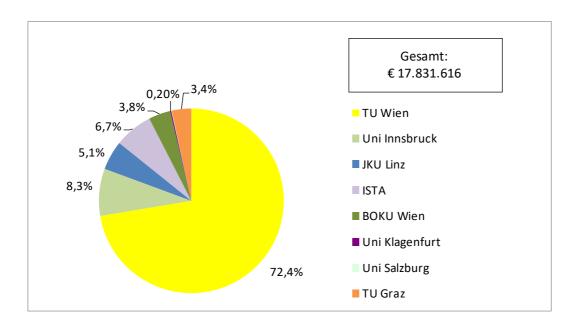


Abbildung 60: Aufteilung nach Themen – Universitäten (2024)

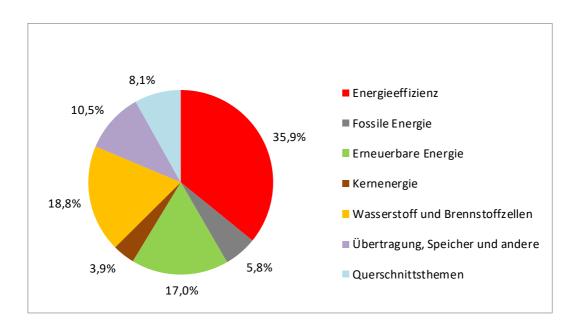
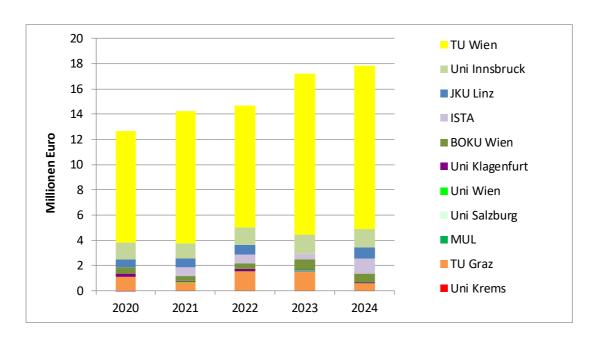



Abbildung 61: Entwicklung Energieforschungsausgaben der Universitäten (2020 bis 2024)

5.2.3.1 Technische Universität Wien

Tabelle 72: Aufteilung nach Themen – TU Wien (2024)

Code	Thema	Euro
11	Industrie	450.537
12	Gebäude und Geräte	379.610
13	Transport	2.048.236
14	Andere Energieeffizienz	1.101.129
19	Nicht zuordenbar, Energieeffizienz	546.091
Zwischensumme	Energieeffizienz	4.525.603
21	Öl und Gas	72.638
23	CO ₂ -Abtrennung und -Speicherung	861.904
Zwischensumme	Fossile Energie	934.542
31	Sonnenenergie	690.610
32	Windenergie	41.489
33	Meeresenergie	166
34	Bioenergie	437.869
35	Geothermie	201.377
36	Wasserkraft	143.120
Zwischensumme	Erneuerbare Energie	1.514.631
41	Kernspaltung	130.300
42	Kernfusion	256.432
49	Nicht zuordenbar, Kernenergie	3.158
Zwischensumme	Kernenergie	389.890
51	Wasserstoff	2.416.534

Code	Thema	Euro
52	Brennstoffzellen	711.758
59	Nicht zuordenbar, Wasserstoff und Brennstoffzellen	81.920
Zwischensumme	Wasserstoff und Brennstoffzellen	3.210.212
62	Elektrische Übertragung und Verteilung	808.998
63	Speicher	285.027
69	Nicht zuordenbar, Übertragung, Speicher und andere	14.585
Zwischensumme	Übertragung, Speicher und andere	1.108.610
71	Analyse des Energiesystems	1.102.956
72	Allgemeine energiebezogene Grundlagenforschung	51.887
73	Andere Querschnittsthemen	66.393
Zwischensumme	Querschnittsthemen	1.221.236
Summe	TU Wien	12.904.724

An der Technischen Universität Wien haben folgende Institute Ausgaben für das Jahr 2024 genannt:

- Abfallwirtschaft und Ressourcenmanagement
- Anorganische Werkstoffe
- Applied Interface Physics
- Atomic and Plasma Physics
- Auto, Energie und Umwelt
- Automation Systems
- Baubetrieb und Bauverfahrenstechnik
- Bauphysik
- Biomechanik und Rehabilitationstechnik
- Bioprozess-Technologie
- Cell Chip
- Center for Labeling and Isotope Production
- Digitaler Bauprozess
- Eisenbahnwesen, Verkehrswirtschaft und Seilbahnen

- Elektrische Antriebe und Maschinen
- Elektrochemische Energieumwandlung
- Energiesysteme und Netze
- Energiewirtschaft und Energieeffizienz
- Fachbereich Analytical Instrumentation Center
- Fachbereich Donor Relations and Engagement Services
- Fachbereich European Innovation Services
- Fachbereich Pilotfabrik
- Fachbereich Universitäre Serviceeinrichtung für Transmissions-Elektronenmikroskopie
- Fahrzeugantriebe und Automobiltechnik
- Fertigungstechnologie
- Festigkeitslehre und Biomechanik
- Festkörperionik
- Fluiddynamische Simulation (CFD)
- Functional and Magnetic Materials
- future.lab Research Center
- Grundbau, Boden- und Felsmechanik
- Hochbau und Entwerfen
- Hochbau und Gebäudeerhaltung
- Industrieanlagendesign und Anwendung digitaler Methoden
- Industrielle Energiesysteme
- Institut für Energiesysteme und Elektrische Antriebe
- Institut f
 ür Energietechnik und Thermodynamik
- Institut f
 ür Theoretische Physik
- Institut f
 ür Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften
- Institute of Telecommunications
- Integrale Gebäudetechnik
- Intelligente Mechatronische Systeme
- Katalysatordesign und Reaktionstechnik
- Komplexe Dynamische Systeme
- Landschaftsarchitektur und Landschaftsplanung
- Leistungselektronik
- Luftfahrzeugsysteme
- Machine Learning
- Magneto- und Thermochemie
- Maschinenbauinformatik und Virtuelle Produktentwicklung
- Maschinenelemente und Luftfahrtgetriebe
- Massenspektrometrische Bio- und Polymeranalytik
- Mikroelektronik

- Mikrosystemtechnik
- Modellkatalyse und angewandte Katalyse
- Molekulare Chemie & Chemische Biologie
- Molekulare Materialchemie
- Nachhaltige organische Synthese und Katalyse
- Nachhaltige Technologien und Prozess-Simulation
- Networks
- Neutronen- und Quantenphysik
- Nuklear- und Teilchenphysik
- Oberflächen-, Spurenanalytik und Chemometrie
- Ökologische Bautechnologien
- Ökonomie
- Optoelektronische Bauelemente
- Organometallische Chemie und Katalyse
- Örtliche Raumplanung
- Photonik
- Prozessanalytik
- Prozesssystematik f
 ür nachhaltige Ressourcen
- Regelungsmethoden-Antriebssysteme
- Regelungsmethoden-Energiesysteme
- Regelungstechnik und Prozessautomatisierung
- Regionalplanung und Regionalentwicklung
- Software-intensive Systems
- Steuerungstechnik und integrierte System
- Strömungsmaschinen
- Surface Physics
- Systems on Chip
- Technische Dynamik und Fahrzeugdynamik
- Technische Katalyse
- Theoretische Materialchemie
- Thermische VT und Simulation
- Thermochemische Verfahrenstechnik
- Thermodynamik und Wärmetechnik
- Tieftemperaturphysik und Supraleitung
- Tragwerksplanung und Ingenieurholzbau
- Verkehrsplanung und Verkehrstechnik
- Wasserbau und Umwelthydraulik
- Wassergütewirtschaft
- Werkstoffwissenschaft Dünner Schichten

- Werkzeugmaschinen
- Wireless Communications

5.2.3.2 Universität Innsbruck

Tabelle 73: Aufteilung nach Themen – Universität Innsbruck (2024)

Code	Thema	Euro
12	Gebäude und Geräte	377.647
14	Andere Energieeffizienz	47.271
Zwischensumme	Energieeffizienz	424.918
23	CO ₂ -Abtrennung und -Speicherung	47.531
Zwischensumme	Fossile Energie	47.531
31	Sonnenenergie	123.113
34	Bioenergie	162.072
36	Wasserkraft	238.693
Zwischensumme	Erneuerbare Energie	523.878
42	Kernfusion	93.481
Zwischensumme	Kernenergie	93.481
51	Wasserstoff	52.206
52	Brennstoffzellen	44.674
Zwischensumme	Wasserstoff und Brennstoffzellen	96.880
62	Elektrische Übertragung und Verteilung	104.412
63	Speicher	183.110
Zwischensumme	Übertragung, Speicher und andere	287.522
Summe	Uni Innsbruck	1.474.210

Die Forschungen wurden über folgende Arbeitsgruppen abgewickelt:

- Energieeffizientes Bauen
- Infrastruktur (Wasserbau/Umwelttechnik)
- Materialwissenschaften, Mikrobiologie, Allgemeine, Anorganische und Theoretische Chemie
- Physikalische Chemie, Ionenphysik und Angewandte Physik

5.2.3.3 Johannes Kepler Universität Linz

Tabelle 74: Aufteilung nach Themen – JKU (2024)

Code	Thema	Euro
13	Transport	1.247
14	Andere Energieeffizienz	90.386
Zwischensumme	Energieeffizienz	91.633
31	Sonnenenergie	824.490
Zwischensumme	Erneuerbare Energie	824.490
Summe	JKU	916.123

Von der Johannes Kepler Universität Linz kam eine Meldung für das Jahr 2024 Institut für Polymeric Materials and Testing.

5.2.3.4 Institute of Science and Technology Austria (ISTA)

Tabelle 75: Aufteilung nach Themen – ISTA (2024)

Code	Thema	Euro
14	Andere Energieeffizienz	871.725
Zwischensumme	Energieeffizienz	871.725
63	Speicher	324.002

Code	Thema	Euro
Zwischensumme	Übertragung, Speicher und andere	324.002
Summe	ISTA	1.195.727

5.2.3.5 Universität für Bodenkultur Wien (BOKU)

Tabelle 76: Aufteilung nach Themen – Universität für Bodenkultur Wien (2024)

Code	Thema	Euro
12	Gebäude und Geräte	186.382
13	Transport	49.868
14	Andere Energieeffizienz	74.802
Zwischensumme	Energieeffizienz	311.052
21	Öl und Gas	11.220
Zwischensumme	Fossile Energie	11.220
31	Sonnenenergie	18.701
32	Windenergie	16.103
34	Bioenergie	8.727
35	Geothermie	6.234
36	Wasserkraft	62.335
Zwischensumme	Erneuerbare Energie	112.100
62	Elektrische Übertragung und Verteilung	3.117
63	Speicher	22.441
69	Nicht zuordenbar, Übertragung, Speicher und andere	16.207
Zwischensumme	Übertragung, Speicher und andere	41.765

Code	Thema	Euro
71	Analyse des Energiesystems	168.149
72	Allgemeine energiebezogene Grundlagenforschung	24.934
73	Andere Querschnittsthemen	13.376
Zwischensumme	Querschnittsthemen	206.459
Summe	воки	682.596

An der Universität für Bodenkultur haben für 2024 folgende Institute Ausgaben genannt:

- Institut für Abfall- und Kreislaufwirtschaft
- Institut f
 ür Bodenforschung
- Institut für Bodenphysik und Landeskulturelle Wasserwirtschaft
- Institut für Hydrologie und Wasserwirtschaft
- Institut für Ingenieurbiologie und Landschaftsbau
- Institut f
 ür Landtechnik
- Institut für Nachhaltige Wirtschaftsentwicklung
- Institut f
 ür Raumplanung, Umweltplanung und Bodenordnung
- Institut für Soziale Ökologie
- Institut für Verfahrens- und Energietechnik
- Institut für Waldbau
- Institut für Wildbiologie und Jagdwirtschaft
- Zentrum für Globalen Wandel

5.2.3.6 Universität Klagenfurt

Tabelle 77: Aufteilung nach Themen – Universität Klagenfurt (2024)

Code	Thema	Euro
62	Elektrische Übertragung und Verteilung	16.519
Zwischensumme	Übertragung, Speicher und andere	16.519
71	Analyse des Energiesystems	18.701
Zwischensumme	Querschnittsthemen	18.701

Code	Thema	Euro
Summe	Uni Klagenfurt	35.220

Von der Universität Klagenfurt kam für das Jahr 2024 eine Meldung vom Institut für Vernetzte und Eingebettete Systeme.

5.2.3.7 Universität Salzburg

Die Nennung von 15.595 Euro betrifft die Research Studios Austria, die im Rahmen des EUROfusion-Konsortiums tätig sind. Die Research Studios Austria Forschungsgesellschaft hat unter anderem eine Leistungsvereinbarung mit der Universität Salzburg und wird deswegen hier erwähnt.

5.2.3.8 Montanuniversität Leoben (MUL)

Die Montanuniversität Leoben hat für das Jahr 2024 eine Leermeldung gesandt.

5.2.3.9 Technische Universität Graz

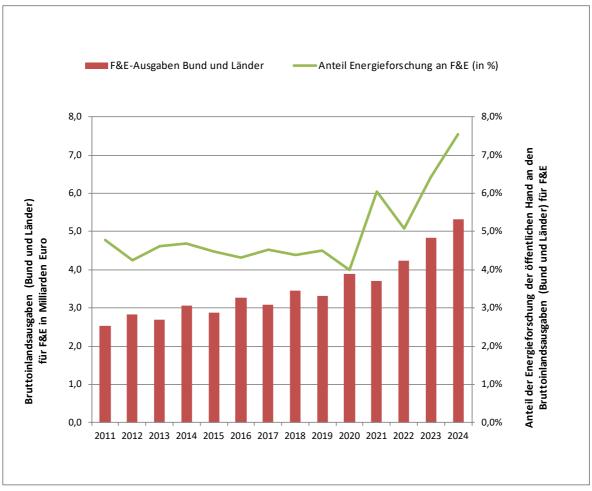
Tabelle 78: Aufteilung nach Themen – Technische Universität Graz (2024)

Code	Thema	Euro
11	Industrie	6.234
12	Gebäude und Geräte	88.307
13	Transport	68.048
14	Andere Energieeffizienz	6.234
Zwischensumme	Energieeffizienz	168.823
31	Sonnenenergie	17.662
36	Wasserkraft	45.193
Zwischensumme	Erneuerbare Energie	62.855
23	CO ₂ -Abtrennung und -Speicherung	37.920

Code	Thema	Euro
Zwischensumme	Fossile Energie	37.920
42	Kernfusion	193.413
Zwischensumme	Kernenergie	193.413
61	Elektrische Kraftwerke	7.792
62	Elektrische Übertragung und Verteilung	24.934
63	Speicher	68.049
Zwischensumme	Übertragung, Speicher und andere	100.775
52	Brennstoffzellen	43.635
Zwischensumme	Wasserstoff und Brennstoffzellen Ergebnis	43.635
Summe	TU Graz	607.421

Für 2024 kamen von der Technischen Universität Graz Meldungen von folgenden Instituten:

- Institut für Biobasierte Produkte und Papiertechnik
- Institut für Biotechnologie und Bioprozesstechnik
- Institut f
 ür Elektrische Anlagen und Netze
- Institut für Gebäude und Energie
- Institut f
 ür Strömungslehre und W
 ärme
 übertragung
- Institut f
 ür Thermische Turbomaschinen und Maschinendynamik


6 Energieforschung im Vergleich

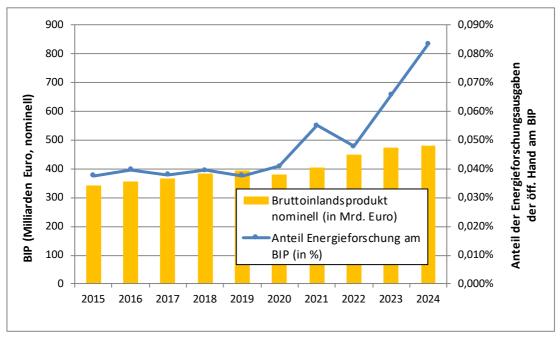
In diesem Abschnitt wird die Entwicklung des Anteils der Energieforschungsausgaben der öffentlichen Hand am Bruttoinlandsprodukt und an den allgemeinen Forschungsausgaben betrachtet.

6.1 Anteil an den Forschungsausgaben

In Abbildung 62 werden die Energieforschungsausgaben der öffentlichen Hand den Bruttoinlandsausgaben für F&E des Bundes und der Bundesländer gegenübergestellt. Letztere sind aus der aktuellen Globalschätzung der Statistik Austria entnommen (Statistik Austria 2024). Von den gesamten Forschungsausgaben 2024 von 16,1 Milliarden Euro entfielen 4,6 Milliarden Euro auf den Bund und 0,7 Milliarden Euro auf die Bundesländer. Diese Ausgaben sind in der Grafik dargestellt. Weitere 1,2 Milliarden Euro entfielen auf die indirekte F&E-Förderung in Form der Forschungsprämie, diese wurden hier nicht berücksichtigt.

Abbildung 62: Anteil der Energieforschungsausgaben der öffentlichen Hand in Österreich an den Bruttoinlandsausgaben für F&E des Bundes und der Bundesländer 2011 bis 2024

Quelle: Statistik Austria, AEA


Berechnungen: AEA

Im Jahr 2021 erreichten die Ausgaben aufgrund der starken Steigerungen im Energiebereich einen Wert von 6,0 %, den höchsten Wert bisher. 2024 wurde der bisherige Höchstwert vom Vorjahr mit 7,5 % noch einmal übertroffen.

6.2 Anteil am Bruttoinlandsprodukt

Die Bedeutung der Energieforschung kann auch am Anteil der wirtschaftlichen Leistung einer Volkswirtschaft gemessen werden, die durch das Bruttoinlandsprodukt (BIP) ausgedrückt wird. Wie in der folgenden Abbildung zu erkennen, zeigt sich hier eine ähnliche Entwicklung wie im vorangegangenen Abschnitt. Die jeweiligen Werte für die Bruttoinlandsprodukte wurden von der Statistik Austria übernommen.

Abbildung 63: Anteil der Energieforschungsausgaben der öffentlichen Hand in Österreich am Bruttoinlandsprodukt 2015 bis 2024

Quelle: Statistik Austria, AEA

Berechnungen: AEA

Im Jahr 2021 führten die Steigerungen im Energiebereich zu einem substanziellen Anstieg des Anteils der Energieforschungsangaben der öffentlichen Hand am Bruttoinlandsprodukt auf 0,056 %, der dann im Jahr 2022 auf 0,048 % zurückging. 2024 wurde der Höchstwert vom Vorjahr (0,066 %) noch einmal übertroffen und erreichte 0,083 %.

7 Angaben zur Privatwirtschaft

Die Österreichische Energieagentur analysierte im Auftrag des BMIMI die von der Statistik Austria erhobenen Ausgaben für Forschung und Entwicklung (F&E) der österreichischen Unternehmen für den Bereich Energie. Von den heimischen Unternehmen wurden im Jahr 2021 759,8 Millionen Euro an Forschungsausgaben dem Thema Energie zugeordnet. Dieser Wert lag um 16,0 % über dem Vergleichswert aus der Erhebung 2019 – ein besonders starker Ausgabenrückgang von Unternehmen mit Hauptsitz in Wien konnte durch substanzielle Steigerungen von jenen in der Steiermark, Oberösterreich und Niederösterreich mehr als wettgemacht werden. Eine detaillierte Auswertung von rund 250 Unternehmen in zehn Sektoren von Energietechnologien zeigt für 2021 ein differenziertes Bild:

- Bei der Photovoltaik konnten die Ausgaben für F&E bei den betrachteten Unternehmen weiter zulegen und erreichten 27,9 Millionen Euro.
- Die Solarthermie konnte in Produktion und Forschung den Rückgang der letzten Jahre umkehren. Unternehmen investierten 2,1 Millionen Euro in F&E.
- Bei der Windkraft gab es nach einem Einbruch in 2020 einen deutlichen Zuwachs an Installationen in Österreich. Während die F&E-Ausgaben der öffentlichen Hand stiegen, fielen die der Privatwirtschaft geringfügig auf 10,0 Millionen Euro.
- Die betrachteten Unternehmen im Bereich der Technologien zur Nutzung der Wasserkraft steigerten ihre F&E-Ausgaben von einem schon recht hohen Niveau auf 91,1 Millionen Euro.
- Bei den Unternehmen, die Anlagen beziehungsweise Technologien zur Erzeugung fester und flüssiger Biobrennstoffe sowie Biogas planen, herstellen oder errichten, sind ähnliche interne Ausgaben für F&E wie in 2019 von 7,7 Millionen Euro zu erkennen.
- Unternehmen, die Kessel, Öfen und KWK-Anlagen (Kraft-Wärme-Kopplung) zur energetischen Nutzung fester Biomasse herstellen, konnten den Rückgang der F&E-Ausgaben umkehren und verzeichneten einen starken Anstieg auf 30,8 Millionen Euro.
- Unternehmen in der Entwicklung und Produktion von Leuchtmitteln und Beleuchtungssystemen haben sich auf die völlig neue LED-Technologie für ihre Produkte umgestellt. Die im weiteren Sinne energiebezogenen Forschungsausgaben dieser Unternehmen blieben auf sehr hohem Niveau und erreichten 62,4 Millionen Euro.
- Zehn Unternehmen gaben im Jahr 2021 insgesamt 43,5 Millionen Euro für F&E im Bereich Stromspeicher aus, was eine deutliche Steigerung zu den Vorjahren darstellt und den Aufwärtstrend fortführt. Der Fokus lag dabei auf Batteriesystemen.
- Das Thema Wasserstoff wurde neu in die Untersuchung mit aufgenommen und zeigten Ausgaben der Firmen von 10,1 Millionen Euro.
- Die Ausgaben der Unternehmen im Bereich Heizung, Kühlung und Klimatisierung haben sich fast verdoppelt und erreichten 17,0 Millionen Euro.

Die Ausgaben der Unternehmen im Jahr 2021 betrugen für diese zehn Technologiebereiche 302,6 Millionen Euro. Insgesamt waren in den betrachteten Unternehmen rund 4.500 Personen (Vollzeitäquivalente) in der F&E tätig, davon etwas mehr als die Hälfte für die untersuchten Technologiebereiche. Die Forschungsprämie spielt ebenfalls eine wichtige Rolle bei der Forschungsfinanzierung und der Attraktivität des Wirtschaftsstandortes Österreich; im Schnitt der letzten drei Jahre konnten jährlich 35 Millionen Euro dem Bereich Energietechnik zugeordnet werden. Die vollständige Auswertung wurde Anfang 2024 veröffentlicht (AEA 2024). Eine Auswertung für das Jahr 2023 wird im Herbst 2025 durchgeführt werden.

Die OMV AG und Oesterreichs Energie stellen der Österreichischen Energieagentur darüber hinaus dankenswerterweise jährlich Informationen zu den F&E-Ausgaben für den hier vorliegenden Bericht zur Verfügung. Diese Angaben sind nicht Teil der Erhebung und Auswertung für die IEA und stimmen mit der Abgrenzung beziehungsweise Themenzuordnung der Erhebung nicht notwendigerweise überein.

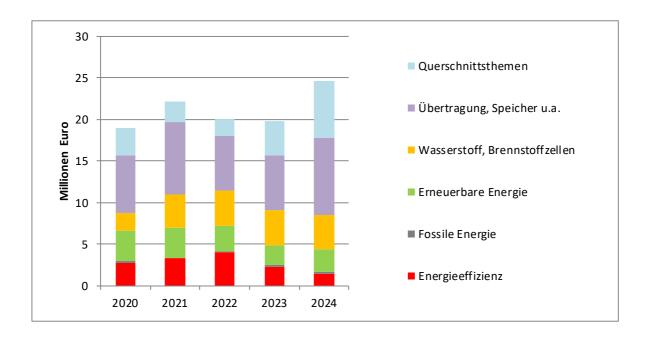

Von Oesterreichs Energie wurden für das Jahr 2024 insgesamt 24,6 Millionen Euro als Ausgaben für F&E der Elektrizitätswirtschaft genannt (siehe folgende Tabelle). In diesem Betrag sind alle Rückmeldungen der Mitgliedsunternehmen an Oesterreichs Energie enthalten.

Tabelle 79: Ausgaben der Elektrizitätswirtschaft (2024)

Thema	Betrag für F&E (in 1.000 Euro)
Energieeffizienz	1.511
Fossile Energie	188
Erneuerbare Energie	2.706
Kernenergie	0
Wasserstoff und Brennstoffzellen	4.096
Übertragung, Speicher und andere	9.353
Querschnittsthemen	6.760
Gesamt	24.614

Quelle: Oesterreichs Energie

Abbildung 64: Ausgaben der Elektrizitätswirtschaft für energiebezogene Forschung und Entwicklung 2010 bis 2024

Quelle: Oesterreichs Energie

Darstellung: AEA

Laut Information der OMV beliefen sich die Aufwendungen der Betriebskosten (OPEX) im Jahr 2023 für F&E für die OMV-Gruppe (inklusive Borealis) auf circa 76,2 Millionen Euro. Davon waren 2023 etwa 34,3 Millionen Euro zu Projekten zurechenbar, die direkt zur Energiewende und Kreislaufwirtschaft beitragen (unter anderem erneuerbarer Wasserstoff, Reoil®, Advanced Biofuels). Diese Aufwendungen stiegen im Jahr 2024 auf circa 87 Millionen Euro beziehungsweise 39 Millionen Euro.

8 Genderspezifische Auswertung

Für diesen Bericht wurden genderspezifische Projektdaten ausgewertet, die der Österreichischen Energieagentur von der FFG auf Ersuchen des BMIMI zur Verfügung gestellt wurden. Zu den energieforschungsrelevanten und damit in dieser Erhebung berücksichtigten Projekten wurden Informationen zur Anzahl der involvierten Technikerinnen sowie Konsortiums- beziehungsweise Projektleiterinnen inkludiert.

Jedes Projekt hat zumindest eine Ansprechperson "Technik", die Anzahl der Ansprechpersonen steigt mit der Anzahl der Organisationen im Konsortium. Diese Personen haben die fachliche Leitung des Beitrages des jeweiligen Konsortialpartners über. Aussagen über die Anzahl und genderspezifische Verteilung der involvierten Forscher:innen sowie anderer Projektmitarbeiter:innen können nicht getroffen werden, die Zahlen betreffen ausschließlich Leitungsfunktionen (fachlich bei einem Projektpartner beziehungsweise im Projektmanagement des Gesamtprojektes).

Der so zusammengestellte Datensatz umfasst 387 Projekte mit einem Förderbarwert von 282,1 Millionen Euro und beinhaltet von Forschungsorganisationen, produzierenden Unternehmen et cetera durchgeführte Projekte aus themenoffenen wie auch thematischen Programmen, die im Jahr 2024 den Vertrag abgeschlossen haben. Zum Vergleich: Für die Auswertung des Jahres 2023 wurden 316 Projekte mit einem Volumen von 196,3 Millionen Euro erfasst. Die Ergebnisse können als repräsentativ für die direkte Finanzierung der Energieforschung durch Fördermittel und Forschungsaufträge der öffentlichen Hand 2024 gesehen werden. Die Entwicklung von vier Kennzahlen (Anteile in %) wird seit 2019 analysiert:

- Anteil Technikerinnen: Im Jahr 2023 belief sich der Anteil von Technikerinnen an den "Ansprechpersonen Technik" (damit sind jeweils die fachlichen Koordinator:innen einer Organisation im Konsortium gemeint) auf 20,5 %. Im Jahr 2024 waren in den 387 Projekten im Bereich "Technik" 225 von den 1092 Ansprechpersonen Frauen, der Anteil von Technikerinnen ist damit im Vergleich zum Vorjahr gleich geblieben (2024: 20,6 %).
- Anteil der Projekte, bei denen zumindest eine Frau in leitender Funktion im Konsortium tätig
 war: In 167 der im Jahr 2024 durch die FFG beauftragten Projekte war zumindest eine Frau in
 leitender Funktion im Konsortium tätig. Damit waren in 43,2 % aller untersuchten Projekte
 eine Frau als Koordinatorin des Projektkonsortiums, Projektleiterin oder zumindest in der
 fachlichen oder inhaltlichen Leitung des Beitrages eines Konsortiumspartners beauftragt. Dies
 stellt eine leichte Steigerung zum Wert des Vorjahres dar (2023: 42,4 %).
- Anteil Projektleiterinnen: 2022 wurden bereits mehr Projekte von Frauen geleitet als in den Jahren davor, und zwar 67 Projekte (19,9 %), im Jahr darauf waren es 69 Projekte (21,8 %). Für das Jahr 2024 kam es hier zu einer weiteren Steigerung auf 23,8 %, da in diesem Jahr

- 92 Projekte von Frauen als Konsortialführerinnen beziehungsweise Projektleiterinnen geleitet wurden. Mit dieser Entwicklung geht auch einher, dass der Anteil am gesamten Förderbarwert von Projekten, die von Frauen geleitet werden, im Jahr 2024 23,1 % des Förderbarwertes aller hier untersuchten Projekte im Energiebereich ausmacht (2023: 18,0 %).
- Anteil von Projekten mit einer Projektleiterin am gesamten Förderbarwert: Im Durchschnitt leiteten Konsortialführerinnen kleinere Projekte als ihre männlichen Kollegen. Diese Beobachtung wurde seit Beginn dieser Analyse (2019) gemacht, nur 2022 war der Unterschied vergleichsweise gering. Im Jahr 2024 stieg der mittlere Förderbarwert aller Projekte auf 728.972 Euro an. Die Differenz zum mittleren Barwert der von Frauen geleiteten Projekte (709.187 Euro) konnte sich dabei erstmals fast schließen.

Abbildung 65: Anteil von Frauen in verschiedenen Funktionen im Projekt (2019 bis 2024)

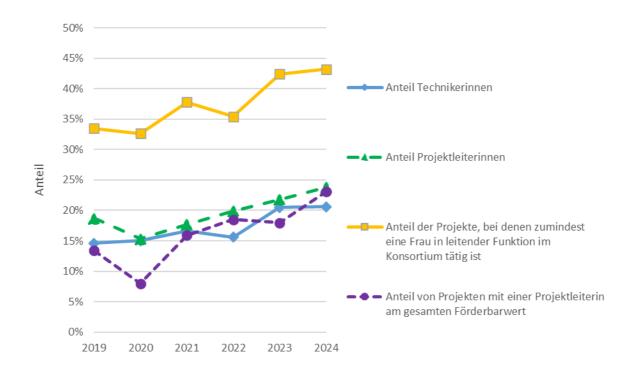


Tabelle 80: Anteil von Frauen in den Programmlinien 2024

Programm(linie)	Anzahl der Projekte	Anteil der von Frauen geleiteten Projekte	Anteil von Projekten mit Frauen in leitenden Funktionen	Anteil von Technikerinnen	Förderbarwert (Euro oder Größenklasse)
ACRP	9	67 %	78 %	36 %	3
AI AUSTRIA Initiative	1	0 %	0 %	0 %	keine Angabe
Bundesländerkooperationen TP	1	0 %	0 %	0 %	keine Angabe
Digital Europe (FZÖ)	1	0 %	0 %	0 %	keine Angabe
Digitale Technologien	12	25 %	58 %	28 %	4
Dissertationen FH OÖ	2	0 %	0 %	0 %	keine Angabe
DISSTIROL	2	0 %	0 %	0 %	keine Angabe
Energie- und Umwelttechnologien	50	26 %	50 %	22 %	4
Energieforschung (e!MISSION)	49	24 %	55 %	19 %	3
EW 24/26	38	39 %	55 %	23 %	3
Expedition Zukunft	9	11 %	22 %	14 %	2
FORTE	1	0 %	0 %	0 %	keine Angabe
Humanpotenzial	6	67 %	83 %	41 %	2
IEA	1	0 %	100 %	50 %	keine Angabe
IPCEI	4	0 %	0 %	0 %	7
IWI	13	15 %	15 %	8 %	3
IWI 24/26	105	14 %	20 %	11 %	3
KIRAS	3	0 %	67 %	31 %	3
Klimaneutrale Industrie	1	0 %	100 %	25 %	keine Angabe

Programm(linie)	Anzahl der Projekte	Anteil der von Frauen geleiteten Projekte	Anteil von Projekten mit Frauen in leitenden Funktionen	Anteil von Technikerinnen	Förderbarwert (Euro oder Größenklasse)
KLWPT 24/26	1	100 %	100 %	100 %	keine Angabe
KNS 24/26	7	14 %	71 %	27 %	3
Kooperationsstrukturen	5	20 %	60 %	22 %	5
KS 24/26	5	20 %	20 %	14 %	4
Leuchttürme eMobilität	12	33 %	75 %	22 %	4
Life Sciences 24/26	1	100 %	100 %	100 %	keine Angabe
Microelectronics2Market	1	100 %	100 %	100 %	keine Angabe
Mobilitätssystem	9	22 %	56 %	17 %	4
MW 24/26	9	33 %	44 %	31 %	2
Produktionstechnologien	3	0 %	67 %	11 %	5
Smart Cities	8	25 %	75 %	20 %	3
Spin-off Fellowship	2	0 %	0 %	0 %	keine Angabe
Themenübergreifend	7	29 %	57 %	21 %	3
THINK.WOOD	1	100 %	100 %	33 %	keine Angabe
Weltraum	8	13 %	38 %	15 %	3
Gesamt	387	23,8 %	43,2 %	20,6 %	728.972

Quelle: FFG Bearbeitung: AEA

Die mittleren Förderbarwerte aller erfassten Projekte einer Programmlinie sind in Größenklassen dargestellt. Bei Programmlinien mit weniger als drei in diesem Vergleich ausgewerteten Projekten kann hier aus Datenschutzgründen "keine Angabe" erfolgen.

Tabelle 81: Größenklassen der mittleren Förderbarwerte der Projekte einer Programmlinie (AEA)

Größenklassen	Mittlerer Förderbarwert (Euro) von	bis Förderbarwert (Euro)
7	5.000.000	-
6	2.000.000	4.999.999
5	1.000.000	1.999.999
4	500.000	999.999
3	250.000	499.999
2	100.000	249.999
1	0	99.999

Eine Darstellung der Studien und Erhebungen auch aus anderen Bereichen findet sich im Bericht des Vorjahres. Eine Erhebung der Statistik Austria wird alle zwei Jahre durchgeführt, die Zahlen für 2023 lagen zum Zeitpunkt der Berichtserstellung noch nicht vor (Publikation voraussichtlich Mitte 2025).

Literaturverzeichnis

AEA (2024): Energieforschungsausgaben – Unternehmenssektor in Österreich 2021, A. Indinger., F. Bettin. In: BMK (Herausgeber), Schriftenreihe 6/2024

<u>nachhaltigwirtschaften.at/de/iea/publikationen/energieforschungsausgaben-unternehmen-2021.php</u>

IEA (2011): IEA Guide to Reporting Energy RD&D Budgets/Expenditures Statistics

<u>iea.org/data-and-statistics/data-product/energy-technology-rd-and-d-budget-database-2</u>

OECD (2015): Frascati Manual, Guidelines for Collecting and Reporting Data on Research and Experimental Development

oecd.org/en/publications/frascati-manual-2015 9789264239012-en.html

Statistik Austria (2024): Globalschätzung: Bruttoinlandsausgaben für F&E 2006 bis 2024

statistik.at/statistiken/forschung-innovation-digitalisierung/forschung-und-experimentelle-entwicklung-fe/forschungsquote-globalschaetzung

Verzeichnis der österreichischen Energieforschungserhebungen

Indinger, Andreas; Bettin, Felix; Rollings, Marion (2024): Energieforschungserhebung 2023 – Ausgaben der öffentlichen Hand in Österreich

nachhaltigwirtschaften.at/resources/iea pdf/schriftenreihe-2024-16a-energieforschunginternational.pdf

Alle früheren Berichte finden sich unter:

nachhaltigwirtschaften.at/de/iea/publikationen/energieforschungserhebungen.php

Themenbereiche englisch

Energy efficiency (1)

11	Industry
111	Industrial techniques and processes
112	Industrial equipment and systems
113	Other industry
119	Unallocated industry
12	Residential and commercial buildings, appliances and equipment
121	Building design and envelope
1211	Building envelope technologies
1212	Building design
1219	Unallocated building design and envelope
122	Building operations and efficient building equipment
1221	Building energy management systems (including smart meters) and efficient internet and communication technologies
1222	Lighting technologies and control systems
1223	Heating, cooling and ventilation technologies
1224	Other building operations and efficient building equipment
1229	Unallocated building operations and efficient building equipment
123	Appliances and other residential/commercial
1231	Appliances
1232	Batteries for portable devices
1233	Other residential/commercial
1239	Unallocated appliances and other residential/commercial
129	Unallocated residential and commercial buildings, appliances and equipment
13	Transport
131	On-road vehicles
1311	Vehicle batteries/storage technologies
1312	Advanced power electronics, motors and EV/HEV/FCV systems
1313	Advanced combustion engines
1314	Electric vehicle infrastructure (including smart chargers and grid communications)
1315	Use of fuels for on-road vehicles (excluding hydrogen)

1316	Materials for on-road vehicles
1317	Other on-road transport
1319	Unallocated on-road vehicles
132	Off-road transport and transport systems
133	Other transport
139	Unallocated transport
14	Other energy efficiency
141	Waste heat recovery and utilisation
142	Communities
143	Agriculture and forestry
144	Heat pumps and chillers
145	Other energy efficiency
149	Unallocated other energy efficiency
19	Unallocated energy efficiency

Fossil fuels: oil, gas and coal (2)

21	Oil and gas
211	Enhanced oil and gas production
212	Refining, transport and storage of oil and gas
213	Non-conventional oil and gas production
214	Oil and gas combustion
215	Oil and gas conversion
216	Other oil and gas
219	Unallocated oil and gas
22	Coal
221	Coal production, preparation and transport
222	Coal combustion (including IGCC)
223	Coal conversion (excluding IGCC)
224	Other coal
229	Unallocated coal
23	CO ₂ capture and storage
231	CO ₂ capture/separation
232	CO ₂ transport

- 233 CO₂ storage
- 239 Unallocated CO₂ capture and storage
- 29 Unallocated fossil fuels

Renewable energy sources (3)

31	Solar energy
311	Solar heating and cooling
312	Solar photovoltaics
313	Solar thermal power and high-temperature applications
319	Unallocated solar energy
32	Wind energy
321	Onshore wind technologies
322	Offshore wind technologies (excluding low wind speed)
323	Wind energy systems and other technologies
329	Unallocated wind energy
33	Ocean energy
331	Tidal energy
332	Wave energy
333	Salinity gradient power
334	Other ocean energy
339	Unallocated ocean energy
34	Biofuels (including liquid biofuels, solid biofuels and biogases)
341	Production of liquid biofuels
3411	Gasoline substitutes (including ethanol)
3412	Diesel, kerosene and jet fuel substitutes
3413	Algal biofuels
3414	Other liquid fuel substitutes
3419	Unallocated production of liquid biofuels
342	Production of solid biofuels
343	Production of biogases
3431	Thermochemical
3432	Biochemical (including anaerobic digestion)
3433	Other biogases

3439	Unallocated production of biogases
344	Applications for heat and electricity
345	Other biofuels
349	Unallocated biofuels
35	Geothermal energy
351	Geothermal energy from hydrothermal resources
352	Geothermal energy from hot dry rock (HDR) resources
353	Advanced drilling and exploration
354	Other geothermal energy (including low-temperature resources)
359	Unallocated geothermal energy
36	Hydroelectricity
361	Large hydroelectricity (capacity of 10 MW and above)
362	Small hydroelectricity (capacity less than 10 MW)
369	Unallocated hydroelectricity
37	Other renewable energy sources
39	Unallocated renewable energy sources

Nuclear fission and fusion (4)

11	Nuclear fission
111	Light water reactors (LWRs)
112	Other converter reactors
1121	Heavy water reactors (HWRs)
1122	Other converter reactors
1129	Unallocated other converter reactors
113	Fuel cycle
1131	Fissile material recycling/reprocessing
1132	Nuclear waste management
1133	Other fuel cycle
1139	Unallocated fuel cycle
114	Nuclear supporting technologies
1141	Plant safety and integrity
1142	Environmental protection
1143	Decommissioning

4144	Other nuclear supporting technologies
4149	Unallocated nuclear supporting technologies
415	Nuclear breeder
416	Other nuclear fission
419	Unallocated nuclear fission
42	Nuclear fusion
421	Magnetic confinement
422	Inertial confinement
423	Other nuclear fusion
429	Unallocated nuclear fusion
49	Unallocated nuclear fission and fusion

Hydrogen and fuel cells (5)

51	Hydrogen
511	Hydrogen production
512	Hydrogen storage
513	Hydrogen transport and distribution
514	Other infrastructure and systems
515	Hydrogen end-uses (including combustion; excluding fuel cells and vehicles)
519	Unallocated hydrogen
52	Fuel cells
521	Stationary applications
522	Mobile applications
523	Other applications
529	Unallocated fuel cells
59	Unallocated hydrogen and fuel cells

Other power and storage technologies (6)

61	Electric power generation
611	Power generation technologies
612	Power generation supporting technologies
613	Other electric power generation
619	Unallocated electric power generation

62	Electricity transmission and distribution
621	Transmission and distribution technologies
6211	Cables and conductors (superconducting, conventional, composite core)
6212	AC/DC conversion
6213	Other transmission and distribution technologies
6219	Unallocated transmission and distribution technologies
622	Grid communication, control systems and integration
6221	Load management (including renewable integration)
6222	Control systems and monitoring
6223	Standards, interoperability and grid cyber security
6229	Unallocated grid communication, control systems and integration
629	Unallocated electricity transmission and distribution
63	Energy storage (non-transport applications)
631	Electrical storage
6311	Batteries and other electrochemical storage (excluding vehicles and general)
6312	Electromagnetic storage
6313	Mechanical storage
6314	Other storage (excluding fuel cells)
6319	Unallocated electrical storage
632	Thermal energy storage
639	Unallocated energy storage
69	Unallocated other power and storage technologies

Other cross-cutting technologies and research (7)

- 71 Energy system analysis
- 72 Basic energy research that cannot be allocated to a specific category
- 73 Other

Themenbereiche deutsche Übersetzung (AEA)

Energieeffizienz (1)

11	Industrie
111	Industrielle Verfahren und Prozesse
112	Industrielle Anlagen und Systeme
113	Andere, Industrie
119	Nicht zuordenbar, Industrie
12	Gebäude und Geräte
121	Gebäudehülle und Planung
1211	Technologien der Gebäudehülle
1212	Planung und Design
1219	Nicht zuordenbar, Gebäudehülle und Planung
122	Gebäudetechnik und Betrieb
1221	Energiemanagementsysteme für Gebäude, Smart Meters
1222	Beleuchtung
1223	Heizung, Kühlung und Klimatisierung
1224	Andere, Gebäudetechnik und Betrieb
1229	Nicht zuordenbar, Gebäudetechnik und Betrieb
123	Geräte et cetera
1231	Geräte
1232	Batterien für transportable Geräte
1233	Andere, Geräte
1239	Nicht zuordenbar, Geräte
129	Nicht zuordenbar, Gebäude und Geräte
13	Transport
131	Kraftfahrzeuge
1311	Fahrzeugbatterien, Speichertechnologien
1312	Leistungselektronik, Motoren und Systeme für elektrische Antriebe
1313	Verbrennungsmotoren
1314	Ladeinfrastruktur für Elektroautos
1315	Treibstoffverbrauch von Kraftfahrzeugen (ohne Wasserstoff)
1316	Materialien für Kraftfahrzeuge

	1317	Andere, Kraftfahrzeuge
	1319	Nicht zuordenbar, Kraftfahrzeuge
	132	Bahn, Schiff, Luftfahrt
	133	Andere, Transport
	139	Nicht zuordenbar, Transport
	14	Andere Energieeffizienz
	141	Wärmerückgewinnung und -nutzung
	142	Kommunale Dienstleistungen in Städten und Gemeinden (Fernwärme, Verkehrsleitsysteme et cetera)
	143	Land- und Forstwirtschaft
	144	Wärmepumpen und Kälteanlagen
	145	Andere, Energieeffizienz
	149	Nicht zuordenbar, andere Energieeffizienz
	19	Nicht zuordenbar, Energieeffizienz
Fossile	e Energi	ie (2)
	21	Öl und Gas
	211	Verbesserte Förderung
	212	Raffinierung, Transport und Lagerung
	213	Produktion von nicht-konventionellem Öl und Gas
	214	Verbrennung
	215	Umwandlung
	216	Andere, Öl und Gas
	219	Nicht zuordenbar, Öl und Gas
	22	Kohle
	221	Produktion, Aufbereitung und Transport
	222	Verbrennung
	223	Umwandlung
	224	Andere, Kohle
	229	Nicht zuordenbar, Kohle
	23	CO ₂ -Abtrennung und -Speicherung
	231	CO ₂ -Abtrennung
	232	CO ₂ -Transport

CO₂-Speicherung
 Nicht zuordenbar, CO₂-Abtrennung und -Speicherung
 Nicht zuordenbar, fossile Energie

Erneuerbare Energie (3)

31	Sonnenenergie
311	Solares Heizen und Kühlen
312	Photovoltaik
313	Solare Wärmekraftwerke und Hochtemperaturanwendungen
319	Nicht zuordenbar, Sonnenenergie
32	Windenergie
321	Windtechnologien onshore
322	Windtechnologien offshore
323	Windenergiesysteme und andere Technologien
329	Nicht zuordenbar, Windenergie
33	Meeresenergie
331	Gezeitenenergie
332	Wellenenergie
333	Osmose- beziehungsweise Salzgradientenkraftwerk
334	Andere, Meeresenergie
339	Nicht zuordenbar, Meeresenergie
34	Bioenergie
341	Erzeugung flüssiger Biobrennstoffe
3411	Benzinersatz (inklusive Ethanol)
3412	Ersatz für Flugzeugtreibstoff, Diesel und Kerosin
3413	Bioenergie aus Algen
3414	Flüssiger Treibstoffersatz, weitere
3419	Nicht zuordenbar, Erzeugung flüssiger Biotreibstoffe
342	Erzeugung von festen Biobrennstoffen
343	Erzeugung von Biogasen
3431	Thermochemische Verfahren
3432	Biochemische Verfahren (inklusive anaerober Prozesse)
3433	Andere, Biogas

3439	Nicht zuordenbar, Biogas
344	Umwandlung in Wärme und Strom
345	Andere, Bioenergie
349	Nicht zuordenbar, Bioenergie
35	Geothermie
351	Hydrothermale Quellen
352	Hot Dry Rock
353	Weiterentwickeltes Bohren und Exploration
354	Andere, Geothermie (inklusive Niedertemperaturquellen)
359	Nicht zuordenbar, Geothermie
36	Wasserkraft
361	Große Wasserkraftwerke (Engpassleistung ab 10 MW)
362	Kleinwasserkraft (Engpassleistung unter 10 MW)
369	Nicht zuordenbar, Wasserkraft
37	Andere, erneuerbare Energie
39	Nicht zuordenbar, erneuerbare Energie

Kernenergie (4)

41	Kernspaltung
111	Leichtwasserreaktor (LWR)
112	Andere Konverterreaktoren
1121	Schwerwasserreaktor (HWR)
1122	Andere, Konverterreaktoren
1129	Nicht zuordenbar, Konverterreaktoren
113	Brennstoffkreislauf
1131	Recycling und Wiederaufbereitung
1132	Nukleares Abfallmanagement
1133	Andere, Brennstoffkreislauf
1139	Nicht zuordenbar, Brennstoffkreislauf
114	Begleittechnologien
1141	Sicherheit
1142	Umweltschutz
1143	Stilllegung und Dekommissionierung

4144	Andere, Begleittechnologien
4149	Nicht zuordenbar, Begleittechnologien
415	Schnelle Brüter
416	Andere, Kernspaltung
419	Nicht zuordenbar, Kernspaltung
42	Kernfusion
421	Magnetischer Einschluss
422	Trägheitseinschluss
423	Andere, Kernfusion
429	Nicht zuordenbar, Kernfusion
49	Nicht zuordenbar, Kernenergie

Wasserstoff und Brennstoffzellen (5)

51	Wasserstoff
511	Erzeugung
512	Speicherung
513	Transport und Verteilung
514	Infrastruktur und Systeme
515	Verwendung (ohne Brennstoffzellen und Fahrzeuge)
519	Nicht zuordenbar, Wasserstoff
52	Brennstoffzellen
521	Stationäre Anwendungen
522	Mobile Anwendungen
523	Andere Anwendungen
529	Nicht zuordenbar, Brennstoffzellen
59	Nicht zuordenbar, Wasserstoff und Brennstoffzellen

Übertragung, Speicher und andere (6)

61	Elektrische Kraftwerke
611	Kraftwerkstechnologien
612	Hilfstechnologien
613	Andere, elektrische Kraftwerke
619	Nicht zuordenhar elektrische Kraftwerk

62	Elektrische Übertragung und Verteilung
621	Übertragungs- und Verteilungstechnologien
6211	Kabel und Leitungen
6212	Wechselstrom/Gleichstrom-Umwandlung
6213	Andere Übertragungs- und Verteilungstechnologien
6219	Nicht zuordenbar, Übertragungs- und Verteilungstechnologien
622	Netzbetrieb
6221	Last-Management (inklusive Integration erneuerbarer Energieträger)
6222	Überwachungssysteme
6223	Standards und Sicherheit
6229	Nicht zuordenbar, Netzbetrieb
629	Nicht zuordenbar, elektrische Übertragung und Verteilung
63	Speicher
631	Elektrische Speicher
6311	Batterien und andere elektrochemische Speicher für stationäre Anwendungen
6312	Elektromagnetische Speicher
6313	Kinetische Energiespeichertechnologien
6314	Andere, elektrische Speicher
6319	Nicht zuordenbar, elektrische Speicher
632	Wärmespeicher
639	Nicht zuordenbar, Speicher
69	Nicht zuordenbar, Übertragung, Speicher und andere

Querschnittsthemen (7)

- 71 Analyse des Energiesystems
- 72 Allgemeine energiebezogene Grundlagenforschung
- 73 Andere Querschnittsthemen

Abbildungsverzeichnis

Abbildung 1: Zeitreihe der Energieforschungsausgaben der öffentlichen Hand 1977 bis 2024,	
nominell und inflationsbereinigt	12
Abbildung 2: Energieforschungsausgaben in Österreich 2024 gesamt nach dem IEA-Code	13
Abbildung 3: Ausgaben der öffentlichen Hand 2020 bis 2024 nominell	13
Abbildung 4: Energieforschungsausgaben in Österreich 2024 gesamt nach Institutionen	16
Abbildung 5: Ausgaben der öffentlichen Hand 2020 bis 2024 nach Institutionen, nominell	17
Abbildung 6: Einteilung der Gesamtausgaben 2024 nach Art der Forschung	17
Abbildung 7: Anteil der Energieforschungsausgaben der öffentlichen Hand in Österreich am	
Bruttoinlandsprodukt (BIP) 2020 bis 2024	18
Abbildung 8: Aufteilung nach Themenbereichen – Energieeffizienz (2024)	34
Abbildung 9: Entwicklung Energieforschungsausgaben – Energieeffizienz (2020 bis 2024)	35
Abbildung 10: Aufteilung nach Themenbereichen – Fossile Energie (2024)	41
Abbildung 11: Entwicklung Energieforschungsausgaben – Fossile Energie (2020 bis 2024)	42
Abbildung 12: Aufteilung nach Themenbereichen – Erneuerbare Energie (2024)	44
Abbildung 13: Entwicklung Energieforschungsausgaben – Erneuerbare Energie (2020 bis 2024)	45
Abbildung 14: Entwicklung Energieforschungsausgaben – Sonnenenergie (2020 bis 2024)	46
Abbildung 15: Entwicklung der Energieforschungsausgaben – Bioenergie (2020 bis 2024)	49
Abbildung 16: Entwicklung Energieforschungsausgaben – Kernenergie (2020 bis 2024)	52
Abbildung 17: Aufteilung nach Themenbereichen – Wasserstoff und Brennstoffzellen (2024)	54
Abbildung 18: Entwicklung Energieforschungsausgaben – Wasserstoff und Brennstoffzellen (202	20
bis 2024)	55
Abbildung 19: Aufteilung nach Themenbereichen – Übertragung, Speicher und andere (2024)	58
Abbildung 20: Entwicklung Energieforschungsausgaben – Übertragung, Speicher und andere (20	
bis 2024)	59
Abbildung 21: Entwicklung Energieforschungsausgaben – Querschnittsthemen (2020 bis 2024) .	63
Abbildung 22: Aufteilung nach Themen Bundesministerien (2024)	
Abbildung 23: Aufteilung nach Themen – Bundesministerien (2024)	66
Abbildung 24: Entwicklung Energieforschungsausgaben der Bundesministerien (2020 bis 2024).	66
Abbildung 25: Aufteilung nach Themen – BMK (2024)	
Abbildung 26: Aufteilung nach Themen – BMAW (2024)	
Abbildung 27: Aufteilung nach Themen – BMBWF (2024)	
Abbildung 28: Aufteilung nach Themen – BML (2024)	
Abbildung 29: Aufteilung nach Themen – BMF (2024)	
Abbildung 30: Aufteilung nach Themen – KLIEN (2024)	
Abbildung 31: Energieforschungsausgaben der Bundesländer (2024)	
Abbildung 32: Entwicklung Energieforschungsausgaben des Bundeslandes Niederösterreich (20	
bis 2024)	
Abbildung 33: Aufteilung nach Themen – Oberösterreich (2024)	
Abbildung 34: Entwicklung Energieforschungsausgaben des Bundeslandes Oberösterreich (2020)
his 2024)	ጸበ

Abbildung 35: Aufteilung nach Themen – Salzburg (2024)	81
Abbildung 36: Entwicklung Energieforschungsausgaben des Bundeslandes Salzburg (2020 bis 20	024)
	82
Abbildung 37: Entwicklung Energieforschungsausgaben des Bundeslandes Steiermark (2020 bis	5
2024)	83
Abbildung 38: Aufteilung nach Themen – Tirol (2024)	83
Abbildung 39: Aufteilung nach Themen – Vorarlberg (2024)	84
Abbildung 40: Entwicklung Energieforschungsausgaben des Bundeslandes Vorarlberg (2020 bis	;
2024)	85
Abbildung 41: Aufteilung nach Themen – Wien (2024)	86
Abbildung 42: Entwicklung Energieforschungsausgaben des Bundeslandes Wien (2020 bis 2024	l) 87
Abbildung 43: Aufteilung nach Themen – FFG (2024)	88
Abbildung 44: Entwicklung Energieforschungsausgaben der Basisprogramme der FFG (2020 bis	;
2024)	90
Abbildung 45: Aufteilung nach Themen – FWF (2024)	91
Abbildung 46: Entwicklung Energieforschungsausgaben des FWF (2020 bis 2024)	92
Abbildung 47: Energieforschungsausgaben der außeruniversitären Forschungseinrichtungen (2	024)
	94
Abbildung 48: Aufteilung nach Themen – außeruniversitäre Forschungseinrichtungen (2024)	95
Abbildung 49: Energieforschungsausgaben der außeruniversitären Forschungseinrichtungen (2	020
bis 2024)	95
Abbildung 50: Aufteilung nach Themen – Österreichische Energieagentur (2024)	97
Abbildung 51: Aufteilung nach Themen – AEE INTEC (2024)	98
Abbildung 52: Aufteilung nach Themen – EI JKU LINZ (2024)	99
Abbildung 53: Aufteilung nach Themen – Joanneum Research (2024)	99
Abbildung 54: Aufteilung nach Themen – Österreichische Akademie der Wissenschaften (2024)	100
Abbildung 55: Aufteilung nach Themen – Silicon Austria Labs (2024)	. 101
Abbildung 56: Energieforschungsausgaben der Fachhochschulen (2024)	. 102
Abbildung 57: Aufteilung nach Themen – Fachhochschulen (2024)	. 102
Abbildung 58: Entwicklung Energieforschungsausgaben der Fachhochschulen (2020 bis 2024)	. 103
Abbildung 59: Energieforschungsausgaben der Universitäten (2024)	. 110
Abbildung 60: Aufteilung nach Themen – Universitäten (2024)	. 111
Abbildung 61: Entwicklung Energieforschungsausgaben der Universitäten (2020 bis 2024)	. 111
Abbildung 62: Anteil der Energieforschungsausgaben der öffentlichen Hand in Österreich an de	en
Bruttoinlandsausgaben für F&E des Bundes und der Bundesländer 2011 bis 2024	. 123
Abbildung 63: Anteil der Energieforschungsausgaben der öffentlichen Hand in Österreich am	
Bruttoinlandsprodukt 2015 bis 2024	. 124
Abbildung 64: Ausgaben der Elektrizitätswirtschaft für energiebezogene Forschung und	
Entwicklung 2010 bis 2024	. 127
Abbildung 65: Anteil von Frauen in verschiedenen Funktionen im Projekt (2019 bis 2024)	. 129

Tabellenverzeichnis

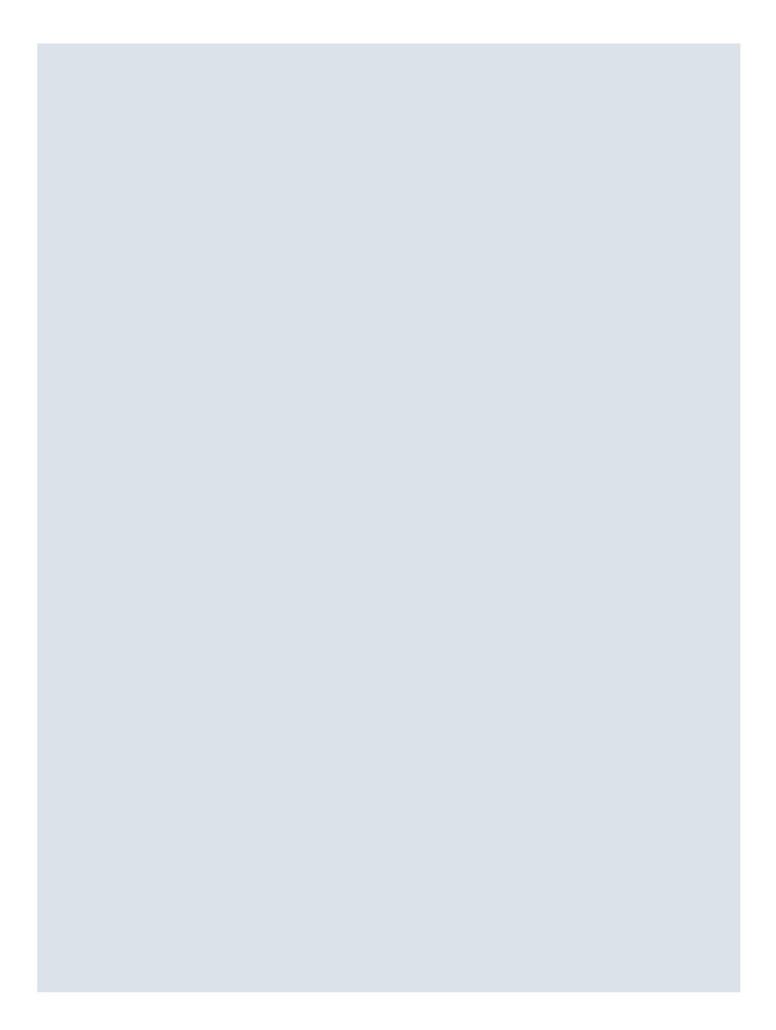

Tabelle 1: Veränderungen gegenüber 2023 – Themen nach dem IEA-Code	14
Tabelle 2: Top Ten der Themen im Jahr 2024	14
Tabelle 3: Veränderungen gegenüber 2023 – Institutionen 2024	16
Tabelle 4: Die sieben Budgetstufen bei IEA-Erhebungen (IEA 2011)	28
Tabelle 5: Aufteilung nach Institutionen – Energieeffizienz (2024)	35
Tabelle 6: Aufteilung nach Institutionen – Industrie (2024)	36
Tabelle 7: Aufteilung nach Themenbereichen – Industrie (2024)	36
Tabelle 8: Aufteilung nach Institutionen – Gebäude und Geräte (2024)	37
Tabelle 9: Aufteilung nach Themenbereichen – Gebäude und Geräte (2024)	37
Tabelle 10: Aufteilung nach Institutionen – Transport (2024)	38
Tabelle 11: Aufteilung nach Themenbereichen – Transport (2024)	39
Tabelle 12: Aufteilung nach Institutionen – Andere Energieeffizienz (2024)	39
Tabelle 13: Aufteilung nach Themenbereichen – Andere Energieeffizienz (2024)	40
Tabelle 14: Aufteilung nach Institutionen – Fossile Energie (2024)	41
Tabelle 15: Aufteilung nach Institutionen – Öl und Gas (2024)	42
Tabelle 16: Aufteilung nach Themenbereichen – Öl und Gas (2024)	42
Tabelle 17: Aufteilung nach Institutionen – CO ₂ -Abtrennung und -Speicherung (2024)	43
Tabelle 18: Aufteilung nach Themenbereichen – CO ₂ -Abtrennung und -Speicherung (2024)	43
Tabelle 19: Aufteilung nach Institutionen – Erneuerbare Energie (2024)	44
Tabelle 20: Aufteilung nach Institutionen – Sonnenenergie (2024)	45
Tabelle 21: Aufteilung nach Themenbereichen – Sonnenenergie (2024)	46
Tabelle 22: Aufteilung nach Institutionen – Windenergie (2024)	47
Tabelle 23: Aufteilung nach Themenbereichen – Windenergie (2024)	47
Tabelle 24: Aufteilung nach Institutionen – Bioenergie (2024)	48
Tabelle 25: Aufteilung nach Themenbereichen – Bioenergie (2024)	
Tabelle 26: Aufteilung nach Institutionen – Geothermie (2024)	50
Tabelle 27: Aufteilung nach Themenbereichen – Geothermie (2024)	50
Tabelle 28: Aufteilung nach Institutionen – Wasserkraft (2024)	50
Tabelle 29: Aufteilung nach Themenbereichen – Wasserkraft (2024)	51
Tabelle 30: Aufteilung nach Institutionen – Kernspaltung (2024)	52
Tabelle 31: Aufteilung nach Themenbereichen – Kernspaltung (2024)	52
Tabelle 32: Aufteilung nach Institutionen – Kernfusion (2024)	53
Tabelle 33: Aufteilung nach Themenbereichen – Kernfusion (2024)	54
Tabelle 34: Aufteilung nach Institutionen – Wasserstoff und Brennstoffzellen (2024)	55
Tabelle 35: Aufteilung nach Institutionen – Wasserstoff (2024)	56
Tabelle 36: Aufteilung nach Themenbereichen – Wasserstoff (2024)	56
Tabelle 37: Aufteilung nach Institutionen – Brennstoffzellen (2024)	57
Tabelle 38: Aufteilung nach Themenbereichen – Brennstoffzellen (2024)	57
Tabelle 39: Aufteilung nach Institutionen – Übertragung, Speicher und andere (2024)	58
Tabelle 40: Aufteilung nach Institutionen – Elektrische Kraftwerke (2024)	59

Tabelle 41: Aufteilung nach Themenbereichen – Elektrische Kraftwerke (2024)	60
Tabelle 42: Aufteilung nach Institutionen – Elektrische Übertragung und Verteilung (2024)	60
Tabelle 43: Aufteilung nach Themenbereichen – Elektrische Übertragung und Verteilung (2024)).61
Tabelle 44: Aufteilung nach Institutionen – Speicher (2024)	62
Tabelle 45: Aufteilung nach Themenbereichen – Speicher (2024)	62
Tabelle 46: Aufteilung nach Subkategorien – Querschnittsthemen (2024)	
Tabelle 47: Aufteilung nach Themen – BMK (2024)	68
Tabelle 48: Aufteilung nach Themen – BMAW (2024)	71
Tabelle 49: Aufteilung nach Themen – BMBWF (2024)	73
Tabelle 50: Aufteilung nach Themen – BML (2024)	74
Tabelle 51: Aufteilung nach Themen – KLIEN (2024)	
Tabelle 52: Entwicklung Energieforschungsausgaben – KLIEN (2020 bis 2024)	77
Tabelle 53: Aufteilung nach Themen – Oberösterreich (2024)	80
Tabelle 54: Aufteilung nach Themen – Salzburg (2024)	
Tabelle 55: Aufteilung nach Themen – Tirol (2024)	84
Tabelle 56: Aufteilung nach Themen – Vorarlberg (2024)	85
Tabelle 57: Aufteilung nach Themen – Wien (2024)	
Tabelle 58: Aufteilung nach Themen – FFG-Basisprogramme (2024)	89
Tabelle 59: Aufteilung nach Themen – FWF (2024)	91
Tabelle 60: Aufteilung nach Themen – AIT (2024)	96
Tabelle 61: Aufteilung nach Themen – Fachhochschule Joanneum (2024)	103
Tabelle 62: Aufteilung nach Themen – Fachhochschule Salzburg (2024)	104
Tabelle 63: Aufteilung nach Themen – Fachhochschule Technikum Wien (2024)	104
Tabelle 64: Aufteilung nach Themen – Fachhochschule Kufstein Tirol (2024)	
Tabelle 65: Aufteilung nach Themen – Fachhochschule Wiener Neustadt (2024)	105
Tabelle 66: Aufteilung nach Themen – Fachhochschule Oberösterreich (2024)	106
Tabelle 67: Aufteilung nach Themen – Fachhochschule Sankt Pölten (2024)	
Tabelle 68: Aufteilung nach Themen – Fachhochschule Burgenland (2024)	107
Tabelle 69: Aufteilung nach Themen – Fachhochschule Campus Wien (2024)	108
Tabelle 70: Aufteilung nach Themen – Fachhochschule Kärnten (2024)	108
Tabelle 71: Aufteilung nach Themen – Fachhochschule Vorarlberg (2024)	109
Tabelle 72: Aufteilung nach Themen – TU Wien (2024)	112
Tabelle 73: Aufteilung nach Themen – Universität Innsbruck (2024)	116
Tabelle 74: Aufteilung nach Themen – JKU (2024)	117
Tabelle 75: Aufteilung nach Themen – ISTA (2024)	117
Tabelle 76: Aufteilung nach Themen – Universität für Bodenkultur Wien (2024)	118
Tabelle 77: Aufteilung nach Themen – Universität Klagenfurt (2024)	119
Tabelle 78: Aufteilung nach Themen – Technische Universität Graz (2024)	120
Tabelle 79: Ausgaben der Elektrizitätswirtschaft (2024)	126
Tabelle 80: Anteil von Frauen in den Programmlinien 2024	130
Tabelle 81: Größenklassen der mittleren Förderbarwerte der Projekte einer Programmlinie (AE	A)
	132

Abkürzungen

AEA	Austrian Engray Agonov
ACA	Austrian Energy Agency
AIT	Austrian Institute of Technology
aws	Austria Wirtschaftsservice
BIP	Bruttoinlandsprodukt
BMAW	Bundesministerium für Arbeit und Wirtschaft
BMBWF	Bundesministerium für Bildung, Wissenschaft und Forschung
BMDW	Bundesministerium für Digitalisierung und Wirtschaftsstandort (damalig)
BMF	Bundesministerium für Finanzen
вмк	Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie
BML	Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft
BMLRT	Bundesministerium für Landwirtschaft, Regionen und Tourismus (damalig)
BMNT	Bundesministerium für Nachhaltigkeit und Tourismus (damalig)
CD-Labor	Christian Doppler Labor
CCS	Carbon Capture and Storage
ERP	European Recovery Program
F&E	Forschung und Entwicklung
FFG	Österreichische Forschungsförderungsgesellschaft
FH	Fachhochschule
FWF	Fonds zur Förderung der wissenschaftlichen Forschung
GDP	Gross Domestic Product
IEA	Internationale Energieagentur
IPCEI	Important Projects of Common European Interest
ISTA	Institute of Science and Technology Austria

KLIEN	Klima- und Energiefonds
KPC	Kommunalkredit Public Consulting
KWK-Anlage	Kraft-Wärme-Kopplung-Anlage
NFTE	Nationalstiftung für Forschung, Technologie und Entwicklung
MW	Megawatt
ÖAW	Österreichische Akademie der Wissenschaften
OECD	Organisation für wirtschaftliche Zusammenarbeit und Entwicklung
OPEX	Operational Expenditures (Betriebskosten)
PPP	Purchase Power Parity
R&D	Research & Development
SAL	Silicon Austria Labs
TU	Technische Universität
UFI	Umweltförderung im Inland
UG34	Untergliederung 34: Innovation und Technologie (Forschung)
VPI	Verbraucherpreisindex

