STANDARDIZED METHODOLOGY

for the elaboration of ice throw risk assessments

Andreas Krenn

Energiewerkstatt e.V.

Co-Authors: N. Clausen, N. Davis, M. Wadham-Gagnon, V. Lehtomäki, R. Cattin, G. Ronsten, H. Wickman, R. Klintström, Z. Khadiri, P. Jordaens

Empiric formula vs. risk assessments

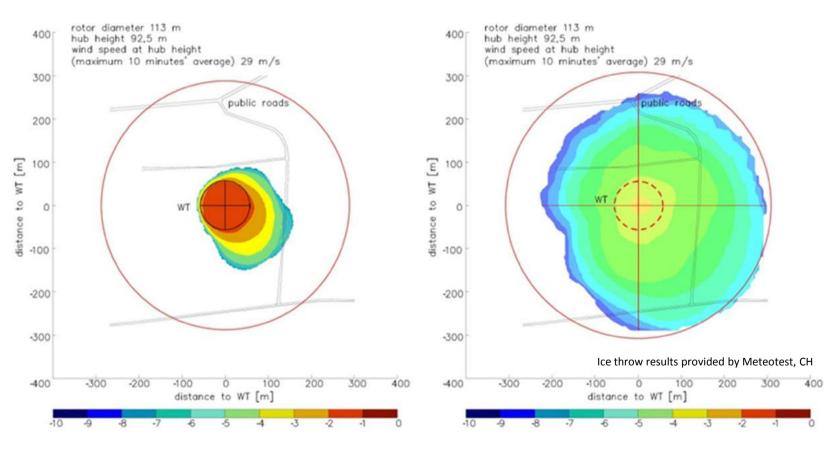


Fig.: Case example – ice fall

Fig.: Case example – ice throw

Assumptions and uncertainties

Ballistic model

- Aerodynamic parameters (rotation, drag & lift, flight trajectories...)
- Consideration of different ice fragments

Data basis for the specific location

- Icing intensity (number of icing events, amount of relevant ice fragments, weight distribution...)
- Wind speed and wind direction distribution

Risk Assessment

- Probability of persons in the danger zone
- What is the acceptable risk level for persons, for cars ...
- Assessment of mitigation measures

Sensitivity Analysis

Case Example – Ice Fall

- Average Location in Lower Austria
- Blade tip height of WT: 200 m
- Wind data based on neighbouring wind met mast (50m, 1 year)
- Icing intensity:
 - 5 icing events/year (evaluation of wind measurement data)
 - Intensity estimated by experience:
 Light/moderate icing
 - → 500 fragments / year (conservative)
- Superposition of 4 different fragments

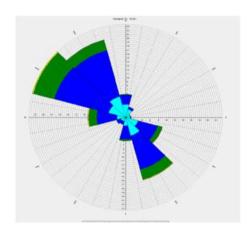
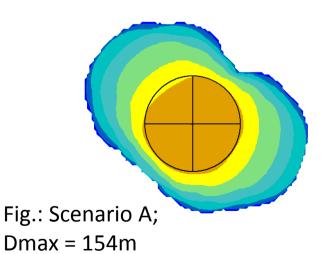
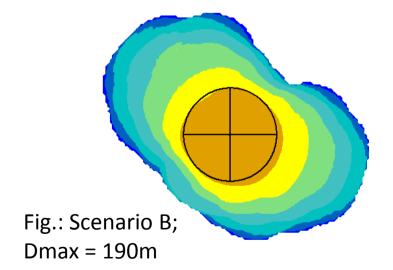


Fig.: Wind direction

	Dimensions	Mass	Numbers
50 %	3x4x8cm	86g	250
35 %	5x8x10cm	240g	175
10 %	5x10x50cm	1,5kg	50
5 %	3x20x100cm	5,4kg	25


Fig.: Weight distribution



Different weight distributions

	Dimensions	Mass	Numbers
50 %	3x4x8cm	86g	250
35 %	5x8x10cm	240g	175
10 %	5x10x50cm	1,5kg	50
5 %	3x20x100cm	5,4kg	25

	Dimensions	Mass	Numbers
77 %	3x5x10cm	90g	385
14 %	3x9x10cm	243g	69
9 %	10x13x20cm	1,6kg	44
0,4 %	16x19x20cm	5,5kg	2

Distribution of ice accretion on the blade

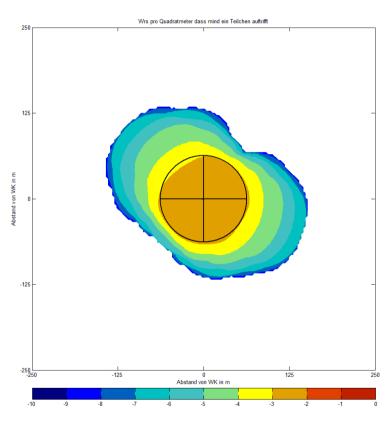


Fig.: Break-off of ice-fragments from the entire rotor radius

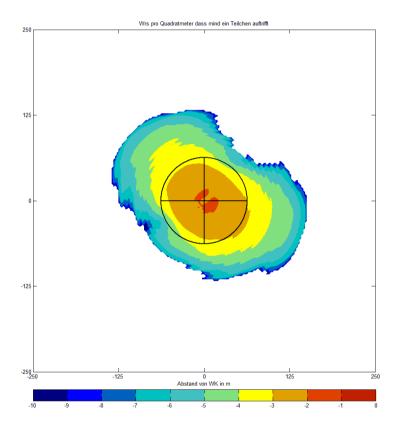
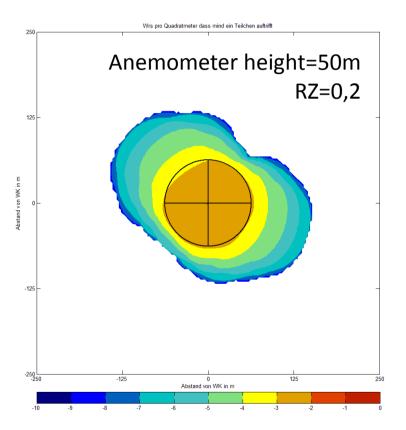
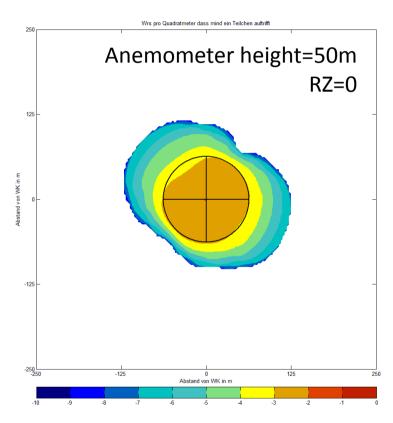
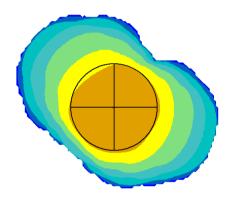
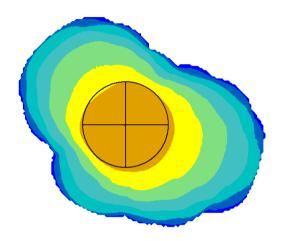
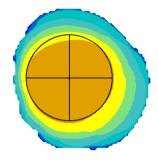




Fig.: Break-off of ice-fragments from the outer third of the rotor

Influence of roughness length




- Maximum distance: 154m vs. 126m
- Average hits/sqm: $9.7 * 10^{-3} vs. 1.3 * 10^{-2}$


Wind speed data

10 Minutes averages, Measuring height = 50m

3 sec. Maximum readings Measuring height = 50m

1-h Reanalysis Data Measuring height = 50m

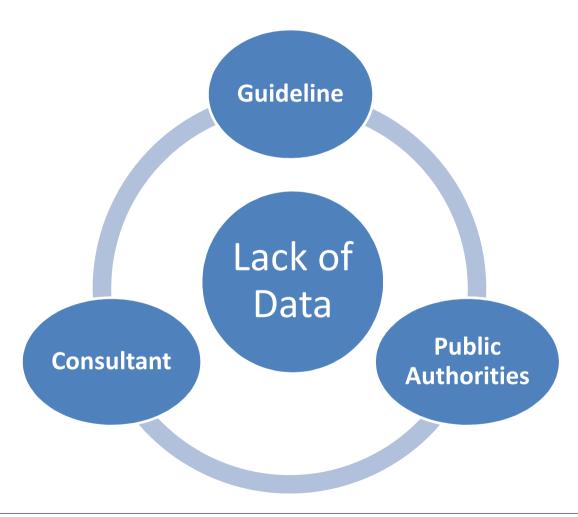
Wind Data	Max. Wind speed [m]	Max Range [m]	Average hits per sqm
10 Minutes averages	21	154	$9.7 * 10^{-3}$
3 Seconds maximum readings	27	180	$8,4*10^{-3}$
1 Hour reanalysis Dara	17	118	$1,6*10^{-2}$

Assumptions for risk assessment

Commonly accepted risk level

- Individual risk vs. collective risk
- ALARP vs. MEM (levels range from 10⁻⁵ to 10⁻⁷)

Thresholds for lethal injuries


- Kinetic energy vs. weight
- Hits per m² vs. hits per size of head

Mitigation measures (warning signs, flashing lights...)

- Efficiency / effectiveness of the individual measures
- Reduction ration: One order of magnitude?

Where do we stand?

Project objectives

Main Targets

- International guidelines/recommendations for the elaboration of ice-throw / ice-fall risk assessments
 - Paving the way to more transparency
 - Awareness of consultants and authorities about crucial parameters

Working procedure

- Cooperation within Task 19 plus interested external experts
- Comparing different approaches and results
- Detailed setup (meetings, case examples...) dependent on number and origin of partner companies

Positive side effect for participants

Learning effect and further improvement of their models

STANDARDIZED METHODOLOGY

for the elaboration of ice throw risk assessments

Thanks for your Attention.