MORE Mobile Remote Energy for heated wind measurement systems

Andreas Krenn Energiewerkstatt

1. INTRODUCTION

2. CHALLENGES HEATED MEASUREMENTS

3. IMPROVED APPROACH - MORE

4. EXPERIENCES AND RESULTS

MORE, Krenn A. Winterwind 2014, Sweden

Company Profile

<u>Wind Energy:</u> Special Focus on Complex Terrain and Cold Climates

- Wind Measurement
- Project Development
- Planning & Implementation
- Research & Demonstration

Heated Measurements with remote power supply

~20 Measurements since 1999

1. INTRODUCTION

2. CHALLENGES HEATED MEASUREMENTS

3. IMPROVED APPROACH - MORE

4. EXPERIENCES AND RESULTS

Challenges with anemometers

- Shaft heated: Wrong / influenced data
- Fully heated: Partial icing due to heating (e.g. cup edge)

Heated Ultrasonics: Problems with invalid data

Photo Source: <u>www.lidar.tropos.de</u>

ightarrow Often no clear picture about the actual situation / poor data availability & quality

Challenges with supply components

- Investment costs for good-quality products
- O&M efforts & costs
 - Provision of certain ambient conditions
 - High fuel consumption during winter period, if sensors are heated permanently
 - Example: 2x Ultrasonics; permanently heated for 4_M
 → ~2x starts per day à 2,5h → 600h operating hours
 → 100l diesel for 4kW machine → refuelling ?!
 - Maintenance depending on operational hours
 - Oil change every 250 hours \rightarrow 2-3x
 - Power of diesel engine vs. capacity of battery pack
 - → System costs vs. data availability
 - \rightarrow Careful selection of components
 - \rightarrow Reduction of energy demand

Challenges with ice detection

• Meteorological icing vs. instrumental icing

- Ice sensors
 - Positioning (different icing conditions on the ground and the top of the mast)
 - Power demand of sensors during heating (Labko 350W)
 - Costs
- Synoptic approach: Site-specific variation, overestimation

 \rightarrow Adaptive approach based on synoptic consideration and webcam observations

1. INTRODUCTION

2. CHALLENGES HEATED MEASUREMENTS

3. IMPROVED APPROACH - MORE

4. EXPERIENCES AND RESULTS

Objectives MORE

Main aims:

- High data availability
- High data quality
- Cost effectiveness

Secondary aims:

- Maintenance-free
- Low energy demand
- Intelligent heating
- Thermal management
- Site specific adoptable design
- Easy to transport
- Remote monitoring and access

Interplay of hard- and software

Selection of Hardware

- Long-term test (5 years) with different components
 - Wind generators in different performance classes and according to MORE requirements
 - No mechanical brake; utilisation of excess energy
 - Installation up to 40m height
 - Fuel-cells with output from 90 W up to 300 W
 - EMS-board tested over 3 years with an hardware update for more output signals
- Webcam up to 100m for monitoring sensors
 - Tests with separate Heating for front part of camera

1. INTRODUCTION

2. CHALLENGES HEATED MEASUREMENTS

3. IMPROVED APPROACH - MORE

4. RESULTS AND EXPERIENCES

System components

- PV generator
- Wind generator
- Fuel cell
- Battery
- EMS board
- Container

nominal power 1.0 kWp up to 2.0 kWp nominal power 350W-1000W nominal power 110W-220W capacity 660Ah intelligent regulation system control isolated Box with thermal management

Key benefits of the EMS

- Intelligent sensor heating
 - Demand-driven
 - Adaptive: Parameter setting depending on the meteorological conditions
 - Control of up to 8 heated sensors including load shedding by priority
- Thermal management
 - Use of excess energy from PV and small wind turbine
 - Automatic protection against overheating: Ventilators, ventilation flaps...
- Data monitoring and Remote Control
 - Automatic record of operational data (producers, sensors...)
 - Automatic SMS alerts at critical operational values
 - Settings can be changed via PC or mobile phone

Winterwind 2014

Key benefits of components

- Industry standard
- Optimally aligned hardware items
- Easy transportable to the sites
 - Container on trailer system
 - Weight allows pulling with common vehicle
 - Slots for Forklift
 - Eyebolts for the helicopter
- Site specific adoptable design
 - At forest sites → 2 small wind turbines on the mast up to 40 m
 - Weak solar radiation → 2 Fuel cell's
 - At exposed / windy sites → 1 powerful wind turbine and PV

Experience from Practice – Location No.1

- Site Specification
 - 1.433 m above sea level Measurement point in the forest
- Measurement Setup

85m HD mast

- 4 x Cup Anemometer
- 1 x 3D-Ulrasonic heated
- Webcam heated
- Meteorological sensors
- Energy supply system

 PV generator (1.000 Wp)
 2 x small wind turbines (2x 350W)
 Battery back
 Fuel cell (90W, backup)
 EMS-Board

Photo Source:

Results Site No.1 (October13-January14)

16% instrumental icing in 4 months, 52% in November100% technical system availability, no maintenance required100% filtered data availability (no data losses)

Experience from Practice – Location No.2

- Site Specification
 - 1.474 m above sea level Measurement point in the forest
- Measurement Setup
 - 85m HD mast
 - 4 x Cup Anemometer
 - 1 x 3D-Ulrasonic heated
 - Webcam heated
 - Meteorological sensors
- Energy supply system
 PV generator (780 Wp)
 1 x small wind turbines (350W)
 Battery back
 EMS-Board

Results Site No.2 (October13-January14)

23% instrumental icing in 4 months, 42% in January100% technical system availability, no maintenance required100% filtered data availability (no data losses)

MORE, Krenn A. Winterwind 2014, Sweden

energiewerkstatt

Outlook

- Small wind turbines partly heated
- Integration of an ice sensor in the control unit
- Sites with further challenges (low solar radiation...)

MORE Mobile Remote Energy for heated wind measurement systems

Thanks for your Attention.

