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Foreword
The International Energy Agency (IEA), founded in November 1974, is an autonomous body within the
framework of the Organization for Economic Co operation and Development (OECD) that carries out
a comprehensive programme of energy co operation among its 23 member countries. The European
Commission also participates in the work of the Agency.

The IEA Photovoltaic Power Systems Programme (IEA PVPS) is one of the collaborative R & D
agreements established within the IEA and, since 1993, its participants have been conducting a
variety of joint projects in the applications of photovoltaic conversion of solar energy into electricity.

The mission of the IEA PVPS program is: To enhance the international collaborative efforts which
facilitate the role of photovoltaic solar energy as a cornerstone in the transition to sustainable energy
systems by:

1. ensuring sustainable PV deployment,
2. improving PV performance and reliability, and
3. assisting in designing new market structures and regulations which will be suitable for the

widespread adoption of unsubsidised PV.

The overall program is headed by an Executive Committee composed of one representative from
each participating country, while the management of individual research projects (Tasks) is the
responsibility of Operating Agents. By mid 2012, fourteen Tasks had been established within the PVPS
program.

The overall goal of Task 14: “High Penetration of PV Systems in Electricity Grids” is to promote the use
of grid connected PV as an important source in electric power systems at the higher penetration
levels that may require additional efforts to integrate dispersed generators. The aim of these efforts
is to reduce the technical barriers to achieving high penetration levels of distributed renewable
systems.

The current members of the IEA PVPS Task 14 are: Australia, Belgium, Canada, Switzerland, China,
Germany, Denmark, Spain, Israel, Italy, Japan, Portugal, Sweden and the United States of America.

This report describes the state of the art of solar and photovoltaic forecasting models used to
facilitate the integration of photovoltaics into electric systems operation, and reduce associated
uncertainties. The report represents, as accurately as possible, the international consensus of the
Task 14 experts on the subject. Further information on the activities and results of the Task can be
found at: http://www.iea pvps.org.
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Executive summary
The field of solar and photovoltaic (PV) forecasting is rapidly evolving. The current report provides a
snapshot of the state of the art of this dynamic research area, focusing on solar and PV forecasts for
time horizons ranging from a few minutes ahead to several days ahead. Diverse resources are used to
generate solar and PV forecasts, ranging from measured weather and PV system data to satellite and
sky imagery observations of clouds, to numerical weather prediction (NWP) models which form the
basis of modern weather forecasting. The usefulness of these resources varies depending on the
forecast horizon considered: very short term forecasts (0 to 6 hours ahead) perform best when they
make use of measured data, while numerical weather prediction models become essential for
forecast horizons beyond approximately six hours. The best approaches make use of both data and
NWP models. Examples of this strategy include the use of NWP model outputs in stochastic learning
models, or the use of measured data for post processing NWP models to correct systematic
deviations between NWP model outputs and measured data.

Benchmarking efforts have been conducted to compare the accuracy of various solar and PV forecast
models against common datasets. Such benchmarking is critical to assessing forecast accuracy, since
this accuracy depends on numerous factors, such as local climate, forecast horizon and whether
forecasts apply to a single point or cover a wide geographic area. In the latter case, which is often the
main interest of electric system operators, higher accuracies can be achieved since random errors at
distant locations tend to be largely uncorrelated and to partially cancel out.
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1. Introduction
Following on the heels of wind power, photovoltaic (PV) electricity generation is making rapid inroads
in electricity grids worldwide, with growth rates in installed capacity ranging from 34% to 82% for
OECD countries over the past decade and installed capacity in these countries reaching 63.6 GW at
the end of 2011 (IEA PVPS 2012). In some European countries, PV production already reaches 30% of
overall power production during clear summer days on a regular basis (EPIA 2012). The rapid growth
in grid penetration of PV and other variable renewables has prompted research and related initiatives,
such as the IEA PVPS Task 14 High Penetration of PV Systems in Electricity Grids.

The two main challenges to high penetration rates of PV systems are variability and uncertainty, i.e.
the fact that PV output exhibits variability at all timescales (from seconds to years) and the fact that
this variability itself is difficult to predict. The current report addresses the second issue, uncertainty,
and the method used to address it: photovoltaic forecasting.

This report is structured as follows. Section 2 discusses the link between weather forecasts and PV
forecasts. Section 3 presents a review of forecasting methods, first for forecasting horizons of 0 to 6
hours ahead (Section 3.1) and then for longer forecasting horizons, from 6 hours to a few days ahead
(Section 3.2). Section 4 specifically examines upscaling, which is used to forecast the output of a large
number of PV systems by making use of a representative subset of well characterized systems.
Section 5 examines forecast accuracy – how well forecasts perform, and what factors influence
forecast quality. Finally, Section 6 presents the results of an IEA PVPS Task 14 survey of solar and PV
forecast models worldwide, illustrating the concepts explored in the previous sections with concrete
examples.
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2. Photovoltaic forecasting and its link to solar
forecasting

Different uses of PV forecasts require different types of forecasts. Forecasts may apply to a single PV
system, or refer to the aggregation of large numbers of systems spread over an extended geographic
area. Forecasts may focus on the output power of systems or on its rate of change (also known as the
ramp rate). Accordingly, different forecasting methods are used. Forecasting methods also depend on
the tools and information available to forecasters, such as data from weather stations and satellites,
PV system data and outputs from numerical weather prediction (NWP) models.

Forecasting methods can be broadly characterized as physical or statistical. The physical approach
uses solar and PV models to generate PV forecasts, whereas the statistical approach relies primarily
on past data to “train” models, with little or no reliance on solar and PV models.

Figure 1: Sketch of a typical physical approach for generating PV power forecasts from weather
forecasts and PV system data.

Basic steps of a typical physical approach are shown in Figure 1. Working upward through the figure,
the end product is a PV forecast as a function of relevant weather variables and PV system
characteristics. The main variables influencing PV output power are the irradiance in the plane of the
PV array, Gi, and the temperature at the back of the PV modules (or cells), Tm. For non concentrating
PV, the relevant irradiance is global irradiance in the array plane, while for concentrating PV it is
direct normal irradiance. Other variables, such as the incidence angle of beam irradiance and the
spectral distribution of irradiance, are included in some PV models, but high accuracies have been
obtained with models that do not incorporate these effects. Depending on data availability, PV
models can either be fitted to historical data (see e.g. Pelland et al., 2011) or else based on
manufacturer specifications (see e.g. Lorenz et al., 2011b).

WEATHER FORECAST

1. Global horizontal 
irradiance (GHI) 

2. Ambient temperature

FORECASTS OF RADIATION IN 
ARRAY PLANE (Gi) AND BACK-OF-
MODULE TEMPERATURE (Tm)

PV POWER FORECAST

PV SYSTEM DATA 
1. System location and 

orientation 
2.  Historical data or 

manufacturer specifications 
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Since neither Gi nor Tm are output by weather forecasts, these must be obtained instead from solar
and PV models that calculate these from PV system specifications and weather forecasts, such as
global horizontal irradiance (GHI) and ambient temperature forecasts. These solar and PV models
make up the intermediate step in Figure 1. Tm can be modelled from PV system specifications and
from GHI and ambient temperature and, optionally, wind speed (see e.g. Lorenz et al., 2011b).
Meanwhile, transposition models to calculate Gi vary in complexity and can make use of only GHI, or
of a range of inputs such as albedo, temperature and relative humidity. For the purpose of forecasting
Gi, recent work by Pelland et al. (2011) suggests that the choice of the transposition model has little
impact on forecast accuracy.

The approach shown in Figure 1 concerns a single, well characterized PV system. When PV forecasts
must be developed for a large number of systems, upscaling methods (see Section 4.1) are used to
generate forecasts covering all systems from forecasts for a limited number of representative systems.

The physical approach with upscaling has been applied for instance by Lorenz et al. (2011b) to
generate PV forecasts over two balancing areas in the German electricity grid. Root mean square
errors (RMSEs) for intra day and day ahead forecasts of 3.9% and 4.6%, respectively, have been
achieved with this method to date over a one year test period in Germany, where errors are quoted
as a percentage of the nominal installed PV power and include night time values (Lorenz et al., 2011a).

Meanwhile, purely statistical approaches do not use the solar and PV models that make up the
intermediate step in Figure 1. Their starting point is a training dataset that contains PV power, as well
as various inputs or potential inputs, such as NWP outputs (GHI, Tm or other), ground station or
satellite data, PV system data and so on. This dataset is used to train models – such as autoregressive
or artificial intelligence models – that output a forecast of PV power at a given time based on past
inputs available at the time when the model is run.

The statistical approach was used for instance by Bacher et al. (2009) to forecast the average output
power of 21 rooftop PV systems in Denmark. Past measurements of the average power and NWP
forecasts of GHI were used as inputs to an autoregressive model with exogenous input (ARX).

In two cases where (pure) statistical and physical approaches were compared (Huang et al., 2010;
Kudo et al., 2009), the statistical approach slightly outperformed the physical. In practice, however,
these two approaches can be blended and the division between them is not sharp. For instance, the
physical approach frequently makes use of model output statistics (MOS) methods that compare
forecasts to observations over a training period in order to correct forecasts, for example by
removing systematic errors. Meanwhile, the best statistical approaches make use of the knowledge
encapsulated in Figure 1 to select input variables judiciously, or to transform these. For instance, Cai
et al. (2010) calculated clear sky irradiances in the plane of PV arrays and used this as an input to a
statistical model.
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3. Forecasting methods for different forecast
horizons

3.1 Solar and PV forecasting 0 to 6 hours ahead (Intra day
forecasts)

Intra day forecasts are an important component of the integration of variable renewable resources
into the electric grid (Jones 2011). For example, in California (the state with by far the largest amount
of installed solar power in the US, the independent system operator CAISO uses the following
forecasts:

The day ahead (DA) forecast is submitted at 05:30 on the day before the operating day,
which begins at midnight on the day of submission and covers (on an hourly basis) each of the
24 hours of that operating day. Therefore, the day ahead forecast is provided 18.5 to 42.5
hours prior to the forecasted operating day. The vast majority of conventional generation is
scheduled in the DA market.

The hour ahead (HA) forecast is submitted 105 minutes prior to each operating hour. It also
provides an advisory forecast for the 7 hours after the operating hour. [Note that the CAISO
HA forecast is really a 1.75 to 8.75 hour ahead forecast. We will use ‘intra day’ here to
identify 0 to 6 hour ahead forecasts in contrast to the ‘day ahead’ discussion in Section 3.2.

CAISO also is considering the implementation of intra hour forecasts on 5 minute intervals; a similar
intra hour forecast is already implemented by the Midwest Independent System Operator (ISO). The
US Federal Energy Regulatory Commission (FERC) has issued a Notice of Proposed Rulemaking
requiring public utility transmission providers to offer all customers the opportunity to schedule
transmission service every 15 minutes, and requiring providers with variable renewables on their
systems to use power production forecasting. Similar day ahead schedules are applicable throughout
the different power exchange markets in Europe. In summary, intra day forecasts are currently of
smaller economic value than DA forecasts but with increasing solar penetration and the expected
accuracy improvement of intra day compared to DA forecasts substantial market opportunities will
likely materialize.

For solar forecasting, very different methodologies are preferred, depending on the forecast horizon
(Table 1). For a more in depth discussion see an upcoming book (Kleissl, 2013):

Stochastic learning techniques identify patterns in data both within one variable (e.g.
autoregression) and between variables or even images. The underlying assumption is that future
irradiation can be predicted by training the algorithms with historical patterns.

o The simplest stochastic learning technique is the persistence forecast which is based on
current or recent PV power plant or radiometer output and extrapolated to account for
changing sun angles. Persistence forecast accuracy decreases strongly with forecast duration
as cloudiness changes from the current state.

Total sky imagery can be used to forecast from real time (nowcast) up to 10 30 minutes ahead by
applying image processing and cloud tracking techniques to sky photographs (Figure 3). The
published methods assume persistence in the opacity, direction, and velocity of movement of the
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clouds (Chow et al. 2011). Irradiance is predicted for the current cloud shadow and then the cloud
shadow is moved forward in time based on cloud velocity and direction.

For satellite imagery, similar methods as in total sky imagery are applied. Clouds reflect light into
the satellite leading to detection and the ability to calculate the amount of light transmitted
through the cloud (transmissivity = 1 – reflectivity – absorptivity). The lower spatial and temporal
resolution probably causes satellite forecasts to be less accurate than sky imagery on intra hour
time scales, but extensive comparisons or combinations of the two approaches have not been
conducted. Satellite imagery is commonly considered the best forecasting technique up to 5 hour
forecast range (Perez et al. 2010).

Table 1 Characteristics of solar forecasting techniques.

Technique Sampling rate Spatial
resolution

Spatial
extent

Maximum Suitable
Forecast horizon

Application

Persistence High One point One Point Minutes Baseline
Whole Sky Imagery

(Figure 3)
30 sec 10 to 100

meters
3 8 km
radius

10s of minutes Ramps,
regulation

Geostationary satellite
imagery

15 min 1 km 65°S – 65°N 5 hours Load following

Numerical weather
prediction (NWP)

1 hour 2 50 km Worldwide 10 days Unit
commitment
regional power
prediction

Day ahead forecasting using NWP and stochastic learning techniques is extensively described in
Section 3.2. NWP models can also be applied intra day, but they will not be considered here, since the
techniques described in this section typically achieve superior performance for forecast horizons of
about 0 to 5 6 hours ahead, as shown in Figure 2.

Figure 2 Root mean square error (RMSE) of different solar forecasting techniques obtained over a year
at seven SURFRAD ground measurement sites (from Perez et al. 2010). The red line shows the satellite
nowcast for reference, i.e. the satellite ‘forecast’ for the time when the satellite image was taken. Cloud
motion forecasts derived from satellite (yellow and white lines) perform better than numerical weather
prediction (NDFD) up to 5 hours ahead. Numerical weather prediction has similar accuracies for forecast

horizons ranging from 1 hour to 3 days ahead. From Perez et al. (2010).
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3.1.1 Total Sky Imagery

Solar forecasting based on whole sky imagery analysis consists of four components: (1) acquisition of
a sky image in the vicinity of the forecast site using a device such as a Whole Sky Imager (WSI) (Shields
et al., 1998); (2) analysis of sky image data to identify clouds (ideally distinguish between thin and
thick clouds); (3) estimation of cloud motion vectors using successive images; (4) use of cloud location
and motion vector data for short term deterministic or probabilistic cloud cover, irradiance, and
power forecasting. A method to accomplish this is described in detail in Chow et al. (2011) and in
Ghonima and Kleissl (2012) and an example is presented in Figure 3b.

Sky imagery has the advantage of very detailed information about the extent, structure and motion of
existing clouds at the time the forecast is made. These data can be used to generate very short term
(minutes ahead) predictions of future cloud patterns in the vicinity of the solar generation facility.
However, the approach at present does not account for cloud development and dissipation or
significant changes in cloud geometry. The extrapolation of the cloud patterns is also limited to the
spatial scale defined by the field of view of the sky imager. It is possible to extend the spatial scale by
using multiple imagers at different locations. Multiple cloud layers with different characteristic
motion vectors may also pose a problem since clouds at upper levels may be partially obscured by
clouds at lower levels. The actual look ahead time for which this method has significant skill will
depend, among other things, upon the cloud velocity and the height of the clouds (the ratio of the
cloud velocity to the cloud height defines an angular velocity about the WSI which determines the
time duration of the cloud being in the field of view). For low and fast clouds the forecast horizon
may only be 3 minutes while for high and slow clouds it may be over 30 minutes, but generally
horizons between 5 to 20 minutes are typical. Even if cloud size and velocity could be determined
accurately, the forecast accuracy depends on the rate at which the cloud field is departing from the
evolution defined by the cloud motion vectors (i.e. development, dissipation, etc.).

At the University of California San Diego, sky imagers (USIs) have recently been specifically developed
for solar forecasting applications and feature high resolution, high dynamic range, high stability
imaging chips that enable cloud shadow mapping and solar forecasting at unprecedented spatial
detail (Figure 3a). Such cameras are better able to resolve clouds near the horizon, which will extend
the forecast accuracy especially for longer look ahead times.

Figure 3a: Ratio of red and blue
channel intensity (red blue ratio or
RBR) on a partly cloudy day from the
newly developed UC San Diego solar
forecasting sky imager. Areas of high

RBR are classified as cloudy.

Figure 3b: 30 second GHI ramp forecast from the Total Sky Imager
(green) against measurements by a 1 sec GHI station at the UC San
Diego campus (black). Timing of cloudy clear and clear cloudy ramps
on this day with cumulus clouds are accurately predicted with the sky

imager.
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3.1.2 Satellite Cloud Motion Vector Approach

The satellite cloud motion vector approach is conceptually similar to the sky image method; cloud
patterns are detected through the use of visible and/or infrared images from satellite based sensors
flying overhead. The advantage compared to the WSI is that a much larger spatial scale of cloud
patterns can be detected and that high quality satellite imagery is continuously available for the
entire world. The cloud index (assumed to be proportional to cloud optical depth) can be calculated
accurately from the reflectance measured by the satellite. This cloud index method is a mature
approach that has been used extensively in solar resource mapping (e.g. Cebecauer et al. 2010, Perez
et al. 2002).

Cloud motion vectors can be determined from subsequent satellite images. Assuming cloud features
do not change between two images, Leese et al. (1971) cloud speed is computed by finding the same
features in a successive image. Hamill and Nehrkorn (1993) applied the same method and showed the
forecast with a backward trajectory technique outperformed the persistence forecast. Hammer et al.
(1999) developed a statistical method based on conditional probabilities to predict cloud cover and
solar radiation up to 2 hours ahead. Lorenz et al. (2004) used a similar method that minimizes the
mean square pixel differences and forecasts solar radiation up to 6 hours ahead.

Satellite derived motion vectors have been used also to improve the results from numerical models.
Velden et al (1998) showed that the Geostationary Operational Environmental Satellites (GOES)
multispectral wind information had a significant positive impact on the numerical model derived
forecasts for tropical cyclone tracks. Bedka and Mecikalski (2005) improved the Velden et al. (1998)
algorithm to derive motion vectors including both synoptic scale and mesoscale flows; such
mesoscale flows are important in applications that monitor the rapid evolution of (convective) clouds
in near–real time. Mecikalski et al. (2009) pointed out that problematic scene types for both synoptic
and mesoscale processing methods are deep convection, thin cirrus, and multilayered clouds. Bosch
et al. (2013) demonstrated that cloud motion vectors can be estimated from ground based irradiance
measurements.

Conversely, for longer look ahead times, wind fields from NWP can be used to improve upon the
steady cloud advection vectors from two recent images (Miller et al. 2011), but the benefit of the
approach has yet to be demonstrated. Classical satellite methods only use the visible spectrum
channels (i.e. they only work in day time), which makes morning forecasts less accurate due to a lack
of time history. To obtain accurate morning forecasts, it is important to integrate infra red channels
(which work day and night) into the satellite cloud motion forecasts (Perez et al. 2010b).

The spatial resolution of geostationary satellite images is 1 km (GOES) or larger (Meteosat outside
high resolution area) which is much less than ground based sky images. Hence, with the exception of
large convective clouds, most clouds cannot be detected and located directly; one can only conclude
that clouds have to be located somewhere within the pixel. In addition, the time frequency, download
time and processing of the images is slower than that of the sky imager, which means the forecast
cannot be updated as frequently. The lack of high spatial and temporal resolution in the satellite
image data reduces the performance of the satellite based approach relative to the sky imager
method for very short look ahead times. However, the much larger area of coverage means that the
motion of the cloud field can be projected forward over longer time periods.

Satellite forecasts have been shown to outperform Numerical Weather Prediction (NWP) models
(Perez et al., 2010) for short term forecasts. Perez et al. (2010) conclude that for forecasts up to 5
hours ahead satellite derived cloud motion based forecasting leads to a significant improvement over
National Digital Forecast Database (NDFD) forecasts. For 1 h forecasts the results from persistence
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and satellite derived cloud motion are found to be on par, probably due to satellite’s navigation and
parallax uncertainties, which tend to mitigate for longer times.

3.1.3 Stochastic Learning Techniques

For very short term (intra hour, and up to 2 or 3 hours ahead depending on the time averaging
interval) forecasts, stochastic learning techniques without exogenous input (i.e. only the power plant
output is used) can be highly competitive in accuracy and relatively easy to setup, especially when
advanced forecasting engines are used (see, e.g., Pedro and Coimbra, 2012). However, inclusion of
relevant exogenous data from sky imagery, satellite, and NWP (in order of increasing forecast
horizon), as well as data from other meteorological databases (NWS, NDFD, etc.) can significantly
increase accuracy and forecasting skill, as described in Section 2. For a review of earlier stochastic
learning and the general use of artificial intelligence methods in solar forecasting, see Mellit (2008).
More recently, new forecasting algorithms that go beyond the use of simple pattern recognition
algorithms have gained attention. These more comprehensive stochastic learning techniques attempt
to remove the opinion of the modeller in the optimization of the topology, initial weights and
coefficients of the neural networks through a Master Optimization Process (MOP) that is usually
evolutionary in nature. The MOP “evolves” the topology of the various artificial neural networks
(ANNs) (number of neurons, layers, initial weights, size of the training set, etc.) by scanning the whole
solution space of the training set with an evolutionary optimization scheme such as a Genetic
Algorithm (GA). This multi objective, multi layer optimization determines the best topologies and the
best sections of the training set for each microclimate under study, and may or may not include
dynamic input selection for exogenous variables through Gamma tests (Marquez and Coimbra, 2011).
Because of their robust and versatile nature, these hybrid schemes outperform persistence,
conventional regression (ARMA, ARIMA, f ARIMA, etc.) and pattern recognition methods (kNN, ANN,
etc.), producing higher fidelity forecasts with or without exogenous variables at various horizons
(Pedro and Coimbra, 2012; and Marquez et al., 2012).

3.2 Solar and PV forecasting 6 hours to days ahead
One of the key uses of solar and PV forecasting is « day ahead » forecasting of the hourly output
power that will be generated by PV systems within an area managed by an electricity system operator
or utility. These day ahead forecasts are typically required by about noon for each hour of the next
day, which implies that day ahead forecasts must in fact extend at least 36 hours ahead to a few days
ahead, depending on the timing of electricity markets and of weather forecasts.
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Figure 4 Evolution of the auto correlation of the clear sky index over several days for Bergen, Norway. The
correlation coefficient of a NWP model forecast for the first forecast day was found to be 0.54. Reproduced

from (Beyer et al., 2009).

While key inputs for forecasts in the range of 0 to 6 hours ahead are past observations (see 3.1),
weather forecasts from numerical weather prediction (NWP) models are the key inputs for day ahead
forecasting. This is illustrated in Figure 4, which shows that the autocorrelation of the clear sky index
drops rapidly over the course of a few hours, limiting the effectiveness of methods based purely on
past data and not incorporating dynamics. Methods that include NWP model outputs therefore
outperform methods based purely on past data after about 2 to 3 hours ahead for the simplest
persistence model to about 3 to 5 hours ahead for cloud motion vector approaches (Perez et al.,
2010).

3.2.1 Numerical weather prediction models

Numerical weather prediction models are based on dynamical equations that predict the evolution of
the atmosphere up to several days ahead from initial conditions. The NWP models that underlie all
others are global models covering the whole Earth. The model equations and inputs are discretized
on a three dimensional grid extending vertically from the surface of the Earth. Since global models
are computationally and otherwise intensive, there are only 14 of these currently in operation
worldwide (Traunmüller and Steinmaurer, 2010).

Model runs are typically initiated two to four times per day, for example at 0, 6, 12 and 18 UTC. Their
initial conditions are derived from satellite, radar, radiosonde and ground station measurements that
are processed and interpolated to the 3D grid. In order to limit computational requirements, the
resolution of global NWP models is relatively coarse, with grid spacings of the order of 40 km to 90
km (Traunmüller and Steinmaurer, 2010). Mesoscale or limited area models are NWP models that
cover a limited geographical area with higher resolution, and that attempt to account for local terrain
and weather phenomena in more detail than global models. Initial conditions for these models are
extracted from the global models.

The best day ahead solar and PV forecasts combine NWP forecasts with post processing of these
forecasts in order to improve them or to generate forecasts that are not included in the direct model
outputs of the NWP, such as PV forecasts or direct normal irradiance forecasts.
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3.2.2 Improving forecasts through post processing of NWP models

Forecast improvements are often performed by comparing to measured data during a training period
which is used to develop corrected forecasts. This type of approach is often referred to as Model
Output Statistics, or MOS.

A number of different MOS approaches have been proposed to date. The following summarizes some
of the key post processing approaches that have been introduced so far in this rapidly evolving field,
and which can be used either singly or in combination.

Spatio temporal interpolation and smoothing

Since NWP forecasts are generated at discrete grid points, their use at a specific point in space
necessitates some form of interpolation. The simplest method is to use the nearest neighbour point
on the grid that is closest to the location of interest. Other approaches involve interpolating forecasts
from grid points surrounding the point of interest. According to Lorenz et al. (2009a), the best results
are achieved by simply taking an average of forecasts at grid points within an area surrounding the
point of interest, effectively smoothing the associated forecasts. Lorenz et al. (2009a), and later
Mathiesen et al. (2011) obtained best results by averaging over areas of about 100 km by 100 km for
forecasts based on the ECMWF and GFS global models, while Pelland et al. (2011) found optimal
results by averaging outputs of the GEM model over larger areas of 300 km by 300 km or more, as
shown in Figure 5. For the mesoscale forecast model WRF with 10 km resolution Müller and Remund
(2010) found an optimal smoothing of 10 x 10 pixels for Switzerland.
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Figure 5 Reduction in root mean square error through averaging of solar forecasts over square grids
consisting of N by N grid points.

In addition to spatial interpolation, temporal interpolation must be used when available NWP model
outputs have a lower temporal resolution than desired. For instance, Lorenz et al. (2011b) used linear
interpolation of the clear sky index to interpolate 3 hourly GHI forecasts from ECMWF to an hourly
time step.

Model Output Statistics to improve forecasts from a single NWP model

Once point forecasts have been generated, these can be improved by comparing to measured data
during a training period over which improved models are developed and fitted. This MOS approach
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works best when forecast corrections are updated in time (recursive) and trained separately over
different conditions or regimes, since forecast errors often depend on the time of the day and of the
year, on sky conditions, etc. (see Section 5.3). Moreover, NWP models are frequently modified and
updated, which necessitates forecast corrections to adapt accordingly.

Figure 6 Solar forecast bias as a function of the cosine of the solar zenith angle and of the (forecasted) clear
sky index. Reproduced from (Beyer et al., 2009).

One simple but powerful type of MOS is the correction of systematic forecast errors, or bias removal.
This was applied for instance by Lorenz et al. (2011b) to solar forecasting in Germany: GHI forecast
bias was computed as a function of sky condition (forecasted clear sky index) and of the position of
the sun (cosine of the solar zenith angle), with the bias computed over a moving 30 day training
window using measurements at several ground stations in Germany. As shown in Figure 6, the
underlying ECMWF forecasts were found to have the strongest bias for intermediate values of the
clear sky index, corresponding to variable cloud conditions. A similar procedure was applied by
Mathiesen et al. (2011) for the US and different bias structures were found for different NWP models.
Bias removal was also developed by Pelland et al. (2011) for GHI forecasts in North America, using a
Kalman filter linear in GHI and a 30 to 60 day moving training window. Both approaches have the
most impact when applied to area forecasts, where bias makes up a larger proportion of the root
mean square error, since non systematic errors from individual points tend to cancel out to some
extent (see section 4.2).

Other MOS approaches forecast GHI from various NWP outputs and past observations. For instance,
Perez et al. (2007) forecasted GHI using cloud cover forecasts from the US NDFD, which does not
output GHI forecasts. They reached forecast accuracies comparable to MOS corrected GHI forecasts
from other mesoscale NWP models that forecast GHI directly. Meanwhile, Marquez and Coimbra
(2011) found improvements over Perez’s approach to GHI forecasting by using four or more NDFD
forecast variables to generate GHI (and DNI) forecasts rather than just one variable. They used a
Gamma Test to select the most relevant NDFD forecast outputs and trained their models using
genetic algorithm search and artificial neural networks (ANNs). Huang et al. (2010) also found
performance improvements by including more than one NWP forecast output into their ANN based
PV forecasts.
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Various other MOS based approaches have been developed to forecast GHI or PV power one to
several days ahead, including autoregressive methods (Bacher et al., 2009; Cai et al., 2010), as well as
various artificial intelligence methods including artificial neural networks (Cao and Lin, 2008;
Chaouachi et al., 2010; Mellit et al., 2010; Huang et al., 2010; Yona et al., 2008), grey models with
ANN (Wang et al., 2011) and support vector machines (Shi et al., 2011). Inputs that have been used by
these authors include:

NWP and other forecasts: GHI, cloud cover, temperature, probability of precipitation, relative
humidity, wind speed and direction

Ground station weather measurements (GHI, relative humidity, temperature, vapour pressure,
sunshine duration)

Satellite based GHI and cloud cover indices

PV power measurements

Variables related to solar geometry and time (zenith angle, clear sky irradiance)

For models that require stationary time series, the clearness index or the clear sky index are often
used, or a PV equivalent of these.

Combining various NWP models

One way to improve solar and PV forecasting is to combine forecasts from different NWP models or
from different members in an ensemble forecast, where initial conditions or physical
parameterizations are varied within a single NWP model to yield probabilistic forecasts. This approach
is being actively pursued in the case of wind forecasting, where significant improvements in forecast
accuracy have been achieved by combining models with weights that depend on prevailing weather
conditions (Ernst et al., 2009). In the solar case, slight improvements in forecast accuracy have been
achieved simply by averaging the forecasts from two or three NWP models (Perez, 2011). Similarly,
Chaouachi et al. (2010) found that an average of three different neural network forecasts based on
past observations outperformed the individual ANN forecasts.
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4. Point forecasts and area forecasts

4.1 Upscaling
The representation of the total power output of all power systems installed in a given area using data
from a subset representative of those systems is usually known as upscaling. Upscaling techniques
have been extensively used in forecasts of wind energy power output, where generating forecasts for
each wind turbine in a given area, besides requiring the availability of detailed data, can be a time
consuming task.

Similar challenges also arise in regional forecasts of photovoltaic power, where specific information
for every photovoltaic system installed can be difficult to obtain, for example, in areas with large
deployments of residential systems. In this case, upscaling techniques can also be applied as they can
simplify the calculations and decrease the need for extended and detailed characteristics of all
photovoltaic systems installed in a given area. In spite of this fact, technical literature regarding
regional forecasts of photovoltaic power with upscaling techniques is not nearly as numerous as it is
in the case of wind energy.

In order to represent a complete set of photovoltaic systems using only a subset of those systems,
two steps need to be followed. First, the subset must be chosen in such a way that its behaviour,
regarding power output is representative of the behavior of the complete set of photovoltaic systems.
This characteristic can be achieved by selecting as the subset a distribution of PV systems with the
desired behavior, or by calculating the necessary number of randomly selected systems that together
will make the subset present characteristics similar to those of the complete set of systems. The latter
approach was investigated by Lorenz et al. (2008), who found that a subset of 150 randomly selected
systems presented a measure of error (a normalized version of the RMSE) similar to that of a
complete set of 500 systems installed in Germany. The second step in upscaling is to scale the output
power of the subset to obtain the output power of the complete set. This step can include post
processing based on comparing the power output of the selected subset with the measured power of
the complete set. In order to do that, Lorenz et al. (2008) normalized the power output values of the
subset and of the complete set by their respective total nominal power, allowing for a direct
comparison between the values of the subset and the values of the complete set.

As indicated above, a number of different approaches can be used in the first and second steps. For
example, in the first step, different errors or correlation parameters could be used to find the
necessary number of randomly selected systems to include in the subset in order to properly
represent the complete set. Also, the subset could be assembled not with a number of randomly
selected systems but with a distribution of systems selected so that their characteristics, such as
location or specifications, are representative of the complete set of installed photovoltaic systems.
This was the approach taken in Lorenz et al. (2011), where in order to do the upscaling, they matched
the spatial distribution of the representative subset to that of the real data set by assigning to each
PV system a scaling factor based on its geographic location on a grid with a resolution of 1 x1 . For
each grid point they derived a scaling factor defined as the ratio between overall installed power and
installed power of the subset for this grid point; each PV system was then assigned the scaling factor
corresponding to the nearest grid point.
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4.2 Error reduction for area forecasts
Area forecasts of power output of photovoltaic systems are important for system operators in charge
of keeping the balance between demand and supply of power in electricity grids. Area forecasts can
be done using data from all systems installed in a given area or using an upscaling technique as
described in the previous section. The errors of area forecasts are typically significantly lower than
the corresponding errors of forecasts of single systems. This error reduction was explored by Lorenz
et al. (2009), who found that the correlation coefficient between the solar forecast errors at two
locations could be modelled with an exponential function of the distance between the two stations,
with errors decreasing rapidly with increasing station distance at first, and more slowly for distances
of about 200 km or more. This effect was modelled in detail by Focken et al. (2002) in the case of
wind: They showed that both the size of the geographic area and the number of stations or systems
considered contributed to error reduction, with the reduction from an increased number of stations
saturating beyond a certain threshold for a given geographic area.

It is difficult to quantify the error reduction that can be achieved in area forecasts of power output, as
the parameters of the exponential functions mentioned above depend on climate diversity within the
region, PV system distribution, capacities, etc. Nevertheless, there are case studies available in the
technical literature. For example, Lorenz et al. (2009) show that solar and PV forecast accuracy
improves significantly as the size of the geographic area under consideration increases, with a
reduction in root mean square error (RMSE) of about 64% for a forecast over an area the size of
Germany as compared to a point forecast. Similarly, Pelland et al. (2011) found that the RMSE for the
forecast of the average irradiance of 10 ground stations across Canada and the U.S. was about 67%
lower than the RMSEs of the irradiance at individual ground stations.

In a Japanese case study, Suzuki et al. (2010) propose a forecast system based on irradiance forecasts
up to 1 day ahead from the JMA MSM (Japanese Meteorological Agency Meso Scale Model). This
model provides forecasts for 0 to 33 hours ahead with a spatial resolution of 5 km x 5 km in Japan.
Hourly forecasts of irradiance are obtained with Just in Time modeling, which is one of the black box
models described in Section 3. The case study used data from 6 meteorological stations and 11
installed photovoltaic systems, from 4/2003 to 4/2007. The authors found that for a set of systems in
an area of 100 km x 60 km in the Kanto region in Japan, the mean absolute error (MAE) for the
regional forecasts was 22% lower than the average MAE for the point forecasts. The authors also
evaluate an error reduction factor in Suzuki et al. (2011) using the full Japanese area, with a “relative
error_ratio” defined as the ratio of MAE to the MAE of a point forecast (relative error ratio of 1 for a
point forecast). The error reduction was around 70% (relative error ratio of 0.3) as shown Figure 7 in
the Japanese case. Figure 8 shows the Kanto region case study using data from 64 PV systems, to
reflect the fact that Japanese utility companies control the frequency in each region and will require
regional forecasts. The “average_distance” in Figure 8 is defined as the mean value of distance among
evaluated points. In this case, the error reduction factor reached maximum values of around 0.4 (60%
reduction in error) when large numbers of points spread across the Kanto region were considered.
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5. Forecast accuracy

5.1 Accuracy metrics and confidence intervals
Various metrics have been proposed and used to quantify the accuracy of solar and PV forecasts.
Which metrics are most appropriate depends on the user: system operators need metrics that
accurately reflect the costs of forecast errors, while researchers require indicators of the relative
performance of different forecast models, and of a single model under different conditions (e.g. clear
vs. cloudy skies – see section 5.3).

Appropriately selecting and specifying the validation dataset over which forecasts will be evaluated is
crucial. First, the test dataset should exclude all data that was used to train models and to develop
post processing methods, so that evaluation is performed on independent data (“out of sample
tests”). Also, data should be screened with appropriate quality check procedures, such as those
outlined by Hoyer Klick (2008), to ensure that forecast evaluation reflects forecast accuracy rather
than issues with the observations used to test the forecasts. Finally, the test dataset should be
appropriately selected and specified alongside evaluation results. Dataset selection should reflect the
intended use of the forecasts or evaluation: for instance, system operators and utilities are interested
in forecast accuracy over all hours of the day, whereas researchers may wish to exclude the trivial
case of forecasting night time irradiance or PV output, or to examine accuracy as a function of
variables that affect it (see 5.3).

Whatever the intended use of forecasts, standardizing performance measures or metrics helps
facilitate forecast evaluations and benchmarking. Beyer et al. (2009) have attempted to standardize
solar forecast benchmarking and accuracy metrics, while Madsen et al. (2005) have proposed
standardized measures of wind forecast accuracy. Common metrics proposed by these authors
include mean bias error (MBE, or bias), mean square error (MSE) and root mean square error (RMSE),
mean absolute error (MAE) and standard deviation (SDE or ). These are defined as follows:
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where yi,forecast and yi,observed are the ith forecast and observation, respectively, and ei is the ith error,
with i=1,…,N running through all forecast observation pairs in the test dataset.

The bias or MBE is the average forecast error, and encapsulates the systematic tendency of a forecast
model to under or over forecast. As discussed in 3.2.2.2, model output statistics approaches can be
used to significantly reduce the bias when past observations are available. MAE gives the average
magnitude of forecast errors, while RMSE (and MSE) give more weight to the largest errors. Madsen
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et al. (2005) argue that large errors are disproportionately costly, so that RMSE better reflects the
costs of forecast errors to system operators than the MAE.

MSE, SDE and bias are related as follows:

222 SDEMBEMSERMSE        (6) 

In other words, the standard deviation captures the part of the RMSE that is not due to systematic
error, and provides an indication of the RMSE that can be achieved once the bias is essentially
eliminated.

All these metrics can be stated as absolutes, or else normalized by dividing by a reference value to
facilitate comparisons. For instance, wind and PV forecasts are commonly normalized by dividing by
the rated capacity of the PV or wind systems, since this is a straightforward and easily accessible
reference value. Meanwhile, solar forecasts are often normalized by dividing by the average
irradiance over the test dataset. In Hoff et al. (2012), the different definitions for the reporting of
normalized accuracy metrics are summarized, evaluated and compared.

Forecast evaluation and accuracy metrics provide one way of generating confidence intervals (also
known as prediction intervals) for forecasts. Adding confidence intervals to forecasts builds into the
forecast an indicator of its expected accuracy: single, deterministic forecast values are replaced by
distributions or ranges of values that can be expected. Such confidence intervals for solar forecasts
have been developed by Lorenz et al. (2009a) and by Marquez and Coimbra (2011): they assumed a
normal distribution in forecast errors for simplicity, and gave confidence intervals as multiples of the
standard deviation associated with a given confidence level (e.g. 2 for 95.4% confidence, 3 for
99.7% confidence). They calculated , and therefore confidence intervals, as a function of sky
conditions and solar position (or time of day), since these parameters strongly influence forecast
accuracy (see 5.3). Bacher et al. (2009) proposed confidence intervals for PV forecasts using quantile
regression. Similarly to Lorenz et al. (2009a) and Marquez and Coimbra (2011), they specified
confidence intervals as a function of forecast horizon and “normalized solar power”, their PV
equivalent of sky condition. Mathiesen, Brown and Kleissl (2012) calculated quantile regime based
confidence intervals for coastal California based on geostropic wind speed and direction to infer the
likelihood of marine layer clouds. In principle, confidence intervals could also be obtained via
ensemble forecasts, which are commonly used for example to forecast probabilities of precipitation.
However, this approach has not yet been explored for solar forecasting.

5.2 Benchmarking of forecasts
Since forecast accuracy depends strongly on the location and time period used for evaluation and on
other factors, it is difficult to evaluate the quality of a forecast from accuracy metrics alone. More
insight can be gained by comparing the accuracies of different forecasts against a common set of test
data.

For instance, some simple forecast methods can serve as benchmarks against which to evaluate
forecasts. One very simple, commonly used reference is the persistence forecast, which basically
assumes that “things stay the same”, which in the solar case implies projecting past values of the
clear sky or clearness index into the future (see e.g. Beyer et al., 2009). Other common reference
forecasts include those based on climate normals and simple autoregressive methods (Beyer et al.,
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2009). Whatever the choice of reference model, forecasts can be compared simply by comparing
their accuracy metrics, or else by calculating the skill score for a given metric, which is defined as:

forecastperfectreference

forecastreference

MetricMetric
MetricMetric

scoreskill      (7) 

In other words, the skill score of a forecast compares the improvement in the chosen metric with
respect to the reference model (numerator) to this same improvement in the case of a perfect
forecast with no errors (denominator). To illustrate, Bacher et al. (2009) reported an improvement in
RMSE by 36% with respect to persistence, which corresponds to an RMSE skill score with respect to
persistence of 0.36.

Benchmarking can also be used to identify conditions under which forecasts perform relatively well,
or poorly. For instance, as mentioned previously, NWP model forecasts underperform persistence for
very short forecast horizons of up to about 2 or 3 hours, indicating that NWP forecasts have little skill
over these horizons. Similarly, Lorenz et al. (2011a) have used comparisons to persistence to flag
problems with PV forecasts in Germany during the winter, and to develop improved algorithms to
deal with snow.

Finally, comparisons can also be applied to various forecast models to set benchmarks for accuracies
that can be expected by the best current models in a given region, and to spur innovation and
forecast improvement. Such benchmarking exercises have been performed for instance in the US
(Perez, 2011), in Canada and in four European countries (Lorenz et al., 2009b). The best results for
day ahead forecasting have so far been obtained from post processing of global NWP models, which
have outperformed forecasts based on mesoscale NWP models. The performance of global NWP
models also seems less dependent on the region of evaluation (Lorenz et al., 2009b). This is also
suggested by Mathiesen and Kleissl (2011), who noted bias patterns for the ECMWF model in the US
similar to those reported for Germany. The benchmarking exercises also highlight that solar forecast
accuracy depends on the region of evaluation: for instance, RMSEs ranged from about 20% to 35% in
Spain, reaching 40% to 60% in Central Europe (Lorenz et al., 2009b).

5.3 Factors that influence forecast accuracy
Introduction

The solar and hence the PV production forecasting accuracy are mainly influenced by the variability of
the meteorological and climatological conditions. To a minor extent, accuracy is affected by
uncertainties related to the different modelling steps that are needed to make energy forecasts out
of irradiation forecasts. The maximum achievable accuracy is determined mainly by the following
factors:

Local climate and weather conditions

Single site or regional forecast

Forecast horizon

Accuracy metric used

Local climate and weather conditions

As stated in (Beyer et al., 2009) and (Lorenz et al., 2009), the accuracy of solar and PV forecasts
depends mostly on climate type and weather conditions. It was shown in (Beyer et al., 2009) as part
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of a study performed with 26 ground measurement stations in Spain during one year (2005) that
forecast accuracy is highly influenced by regional climate. In that study, forecast accuracy measures
(both RMSE and bias) were shown to be much poorer for installations in the northern region of Spain
as compared to the central and southern regions of Spain. Also (Lorenz et al., 2009) found that for
central European stations, the relative Root Mean Square Error (RMSE) ranges from 40% to 60%
compared with values of 20% to 35% for Spanish stations. Another study focusing on Switzerland
(Müller and Remund, 2010) concluded that the forecast error (RMSE) was lower in places with
sunnier weather conditions.

Among the factors that can explain this regional dependence are the dependence on weather
situation (clouds that are commonly represented by the clear sky index “kT

*”), the sun elevation angle
and the local terrain conditions. As shown in Figure 9, there is a direct relationship between the sky
conditions and the accuracy of the forecasts (Beyer et al., 2009): Clear skies are relatively easier to
forecast (lower percent RMSE) than partly cloudy and overcast weather conditions. Figure 9 also
shows that the forecast accuracy decreases as the solar elevation angle decreases. The solar elevation
angle distribution not only causes a regional dependency of the forecast accuracy, but also a seasonal
dependency as found in (Beyer et al., 2009) and (Lorenz et al., 2009) as well as daily one (Müller and
Remund, 2010), compromising the forecasting as the solar elevation decreases.

Finally, concerning the local terrain conditions, it has been shown in (Pelland et al., 2011) that
forecasting accuracy of a single site is highly affected due to micro climatic effects, especially in
mountainous regions.

Figure 9 RMSE as a function of the cosine of the solar zenith angle and the predicted clear sky index (Beyer et
al., 2009). The solar elevation angle increases from left to right.

Single site or regional forecast

Besides single site forecasting, forecasting of the aggregated regional PV production is often
demanded. As in the case of wind forecasting, Lorenz et al. (2009) show that solar and PV forecast
accuracy improves significantly as the size of the geographic area under consideration increases, with
a reduction in root mean square error (RMSE) of about 64% for a forecast over an area the size of
Germany as compared to a point forecast. This is due primarily to decreasing correlations between
forecast errors from two locations as their separation increases, leading to (partial) cancellations
between the errors at individual sites. This effect was modelled in detail by Focken et al. (2002) in the
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case of wind: They showed that both the size of the geographic area and the number of stations or
systems considered contributed to error reduction, with the reduction from an increased number of
stations saturating beyond a certain threshold for a given geographic area.

Forecast horizon

As discussed in section 3, the most adequate forecasting technique depends on the forecast horizon
required: Numerical Weather Prediction models (NWP) perform best for horizons of 1 or 2 days
ahead, whereas statistical models based on local ground measurements, possibly combined with
satellite or sky imager data of cloud movements, are more adequate for short horizons of less than 6
hours ((Hammer et al., 1999) and (Lorenz et al., 2009)). Accuracies typically decrease with increasing
forecast horizon, with a steeper decrease for methods such as persistence forecasting based solely on
past data.

Accuracy measures

As discussed in Sections 5.1 and 5.2, different users are interested in different measures of forecast
accuracy and the strategies used to optimize forecast accuracy will vary depending on which accuracy
measures are selected for optimization. When stating forecast accuracy, it is important to specify not
only which metric is used (RMSE, MAE or other), but also to clarify whether this value has been
calculated over complete 24 hour periods or only taking into account daylight hours. When
normalizing the accuracy value, especially for PV forecasts, it should be specified whether it is
normalized by the mean produced power during the considered period or the rated power of the PV
system(s).
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6. Solar forecast survey results
Important criteria for the evaluation of forecast systems were determined and brought together in
the questionnaire "Use of solar and PV forecasts for enhanced PV integration". It was distributed in
August 2011 to about 30 experts in order to collect different case studies.

The questionnaire included a total of 34 questions grouped in 7 blocks:

1. model names

2. temporal range

3. post processing schemes (e.g. MOS)

4. additional parameters (e.g. global radiation on inclined planes, PV production)

5. spatial information and aggregation

6. forecast evaluation

7. uncertainty and references

It was aiming at shortest (0 – 6 h) as well as short time (6 – 72 h) and at statistical as well as
deterministic forecasts.

Up to now 15 organizations have filled in the questionnaire. The organizations are from the private
and public sectors (universities and meteorological offices) and are based in North America, Europe
and Japan. Table 2 gives an overview of the 15 answers.

Table 2 Overview of survey results.

Organi
sation
form

Source Type Global
model

Mesoscale
model

Reso
lution
[km]

Area Maximum
time
horizon [d]

Science DLR (DE) NWP ECMWF 25 Point 2
Science CanmetENERGY(CAN) NWP / P GEM 15 Point 2
Met. office JWA (JP) Cloud

motion*
1 Point 0.25

Met. office MeteoSwiss (CHE) NWP ECMWF Cosmo*** 2 / 7 Point 1 / 3
University
Private

Univ. Oldenburg /
Meteocontrol (DE)

NWP / P ECMWF 25 Point/
Regional

3

University Univ. Jaen (ES) NWP ECM/GFS WRF 3 Point 3
University DTU IMM (DK) NWP ECMWF Hirlam Point 2
University AIST / Waseda (JP) NWP / P JMA GSM NHM 5 Point 1.5
University Univ. GIFU (JP) NWP JMA GSM MM5 2 Point 2
University UCSD (USA) Cloud

motion**
<0.1 Point <0.1

Private 3E (BE) NWP / P ECMWF Point 6
Private Bluesky Wetteranalyse

(A)
NWP / P GFS Cosmo Point 3

Private Irsolav (ES) NWP / P GFS Point 3
Private Meteotest (CH) NWP GFS WRF 10 Point 2.5
Private Weather Analytics (USA) NWP / P GFS 1 Point 6

NWP = numerical weather prediction model, P = post processing, * = satellite images, ** = Sky imager
*** Cosmo 2 km for 0 – 24 h, Cosmo 7 km for 0 – 72 h forecasts.
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The results of the questionnaire show only a part of the models used worldwide. Especially in
Germany, many commercial models are run as regional power prediction is needed for the grid
integration of PV due to the higher penetration level. As a rule of thumb, regional PV forecasts appear
to be needed when yearly energy production of PV reaches a level of 1 – 2% of yearly energy demand.

Most of the models described deal with the time frame of 6 – 72 hours ahead and include numerical
weather prediction models (NWP). No purely statistical model is included.

The underlying global NWP models ECMWF (www.ecmwf.org) and GFS
(http://www.emc.ncep.noaa.gov/GFS/) are those that are used most often (almost 50 % each). It can
be noted that GFS is mostly used by private companies, as ECMWF is too expensive to use for small
private companies (although the accuracy of the radiation parameters of ECMWF is higher as will be
shown later). Most groups using NWP are using either a limited area forecast model and/or statistical
post processing.

In Table 3 the internet links for the mesoscale models and the solar radiation models used are listed.

Table 3 Internet links of the mesoscale and solar radiation models

Type Name Link

Mesoscale
/ solar

Cosmo http://www.cosmo model.org

Mesoscale Hirlam http://hirlam.org
Mesoscale MM5 http://www.mmm.ucar.edu/mm5/
Mesoscale NHM http://www.mri jma.go.jp/Project/mrinpd/INDEXE.htm
Mesoscale WRF http://www.wrf model.org
Solar Univ.

Oldenburg /
Meteocontrol
(DE)

http://www.meteocontrol.de/energy weather
services/prognosedienstleistungen/solarstromprognose/

Solar UCSD (USA) http://solar.ucsd.edu
Solar Univ. Jaen (ES) http://matras.ujaen.es
Solar Univ. GIFU (JP) http://net.cive.gifu u.ac.jp
Solar 3E (BE) http://www.3E.eu
Solar Bluesky

Wetteranalyse
(A)

http://www.blueskywetter.com

Solar Irsolav (ES) www.irsolav.com
Solar Meteotest (CH) http://www.meteotest.ch/en/footernavi/energy_economy/energy_forecasts/
Solar Weather

Analytics (USA)
http://www.weatheranalytics.com

Post processing is done either by simple de biasing and smoothing of several surrounding pixels, by
Kalman filters or by more complex neural networks (mostly by groups in Spain and Japan). Standard
model output statistics (MOS) like multiple linear regressions are not used in the included examples.
About 50% of the models also include additional parameters like PV production, and not only global
radiation on a horizontal plane.

Two models are made for very short term forecasting. One model made by University of California
San Diego (UCSD) is based on a sky imager and delivers data up to 20 minutes ahead (see Section
3.2.1). The other model coming from the Japan Weather Association (JWA) is based on cloud motion
vectors and delivers results up to 6 hours ahead. This type of model is also run for example by the
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State University of New York and the University of Oldenburg (Lorenz et al., 2004), but those
organisations did not fill in the questionnaire for this type of model.

14 of 15 models were used for point forecasts and only one also for a regional forecast. The regional
forecast is made with help of a regionalisation or upscaling model based on online PV measurements
(Lorenz et al., 2011).

Information about accuracy was given for 13 of the 15 models. As expected, the results are difficult to
compare, as the validations were made at different locations with different time steps. Nevertheless,
we try to show an overview in Table 4 in order to give an indication of the scale of uncertainties.
Whenever possible, we compare the root mean square error (RMSE, see 5.1) in relation to
persistence by giving a ratio (in %) of forecast RMSE to persistence RMSE. To enhance the quality of
the comparison we have entered also the results of the benchmarking within the IEA SHC Task 36
(Lorenz et al., 2009) as well as the publication of Pelland et al. (2011).

Table 4 Uncertainty information for the given models.
(If not marked, the uncertainties are taken from the questionnaire).

Source Location Time step
and
forecast
time

Uncertainty
% of persistence
(= 100% skill score)

Uncertainty
RMSE (relative or
absolute)

DLR (DE) Southern Spain 1 h, day 1 DNI:
50 – 64% RMSE

CanmetENERGY (CAN) Canada, USA 1 h, day 1 –
2

57%1

JWA (JP) Japan 30 Min, 1h. 140 W/m2

MeteoSwiss (CH) Switzerland
Univ. Oldenburg /
Meteocontrol (DE)

Switzerland
Southern Spain
Canada, Spain

1 h, day 1 65%2

61% 2

57% 2

42 % RMSE
21 % RMSE

Univ. Jaen (ES) Southern Spain 1 h, day 1 72% 2

DTU IMM (DK) Denmark 68% 2

AIST / Waseda (JP) Japan 1 h, day 1 100 W/m2

Univ. GIFU (JP) Gifu 1 h 64% RMSE
UCSD (USA) San Diego,

4 days
30 sec.
5 min.

50%
75%

3E (BE) Benelux 1h, day 1 GHI: 100 W/m², 44%
Power: 47%

Bluesky Wetteranalyse (A) Switzerland 1 h, day 1 65%2

Irsolav (ES) Spain 1 h, day 1 18 – 35% RMSE
Meteotest (CH) Switzerland 1 h, day 1 72% 23 41% 50% RMSE
Weather Analytics (USA)

For a forecast time horizon of 24 – 48 h the RMSE is in the range of 57 – 72% of persistence RMSE.
The results are dependent on the site. The cloudier the region, the higher the uncertainty. The best
results for day ahead forecasts are achieved with the GEM and ECMWF models in combination with
post processing, while the highest values of uncertainty are reached by GFS based WRF. The use of
mesoscale models does not seem to enhance the quality. Post processing (mainly spatial averaging

                                                
1 Pelland et al., 2011
2 Lorenz et al., 2009
3 Müller and Remund, 2010
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and bias corrections) can lower the uncertainties (relatively) by 15 – 25% (Pelland et al., 2011, Müller
and Remund, 2010).

The spatial resolution is in the range of 2 – 25 km. The influence of resolution on the quality of the
results is not apparent (as it is for other meteorological parameters). This is also supported by the
experience that spatial smoothing of model output leads to lower uncertainty (see Section 3.2.2). The
reason for this is the fact that the exact positions of clouds cannot be calculated for more than 6
hours ahead due to chaotic behaviour of the system.
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Conclusion
Solar and photovoltaic forecasting is a dynamic research and development area, with new models
and findings emerging rapidly. The overview of the current state of the art in this field presented in
this report is therefore bound to gradually become outdated – and the authors welcome this! In
particular, solar and photovoltaic forecasts have only recently been introduced into electricity system
operation, for instance in Germany and Spain. Dialogue between system operators and the research
community will help ensure that appropriate accuracy metrics are targeted and become the focus of
forecast improvement efforts. Probabilistic or ensemble forecasting for instance could form the basis
of probabilistic unit commitment or other novel approaches to system operation adapted to a strong
presence of variable renewables on the grid. Forecasting rapid solar ramp rates is also garnering
attention among electricity system operators and has not yet received significant attention from the
research community. Likewise, the advent of the smart grid with predictive control of buildings and
electricity loads will place its own requirements on solar and PV forecasting and help spur new
developments.
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