

BEST

Bioenergy and Sustainable Technologies

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Biotreibstoffe zur Defossilisierung des Langstreckenverkehrs

Ergebnisse aus IEA Bioenergy Task 39 und IEA AMF Task 63

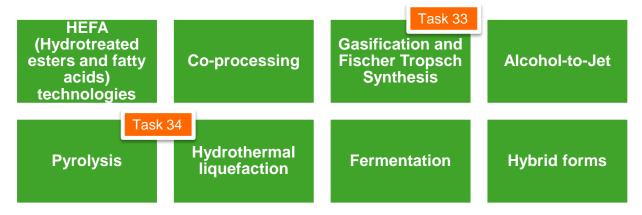
IEA Vernetzungstreffen, Wien, 26.09.2023 Andrea Sonnleitner, Doris Matschegg

Task 39: Biofuels to decarbonize transport

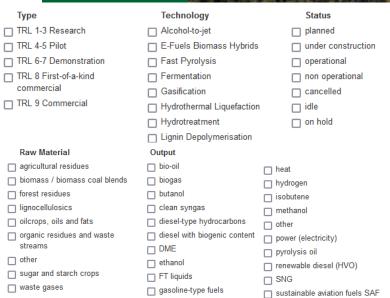
- Expert*innennetzwerk mit 16 teilnehmenden Staaten / Organisationen
- Vorantreiben der Kommerzialisierung nachhaltiger Biotreibstoffe für den Transportssektor
- Laufende Projekte, Publikationen und Webinare zu den Themen:
 - Technologie und Kommerzialisierung
 - Nachhaltigkeit, Politik, Märkte und Implementierung
- https://task39.ieabioenergy.com/

Task 63 Sustainable Aviation Fuels – Status quo and national assessments

- Österreich, Brasilien, China, Dänemark, Deutschland, Schweiz, USA
- Aktivitäten im Task:
 - Beschreibung internationaler Status
 Quo
 - Identifikation der wichtigsten Herausforderungen für die Markteinführung von SAF
 - Beispiele für einen erfolgreichen Einsatz
 - Organisation von Workshops und Online-Seminaren
- https://ieaamf.org/content/projects/map_projects/63


Projekte und Themenfelder in Task 39

Fortschrittliche Biokraftstoffe und Produktionstechnologien


- "fortschrittliche Biokraftstoffe": hergestellt aus Anhang IX Teil A aufgeführten Rohstoffen (RED) : organische Anteile von Abfällen, landwirtschaftliche und forstwirtschaftliche Reststoffe, …
- Produktionsrouten: biochemisch thermochemisch oleochemisch

Weltweite Produktionsanlagen

https://demoplants.best-research.eu/

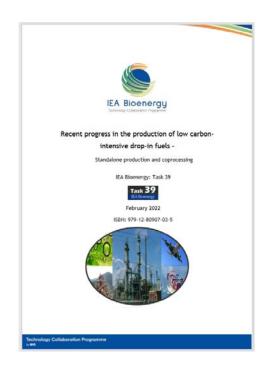
Herausforderungen und Hürden in der Implementierung

- Hohe Produktionskosten
- Finanzielle Risiken von Demonstrations- und First-of-its-Kind Anlagen
- Ungewissheit des regulatorischen Rahmens und der Politik
- Verfügbarkeit und Nachhaltigkeit von Rohstoffen
- "Wettbewerb" mit Elektrifizierung und anderen Technologien oder Kraftstoffen

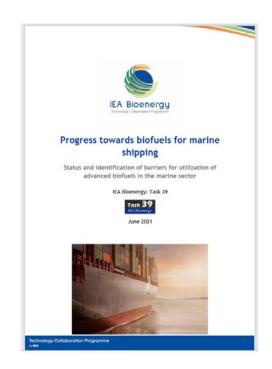
ABER:

Für Defossilisierung des Langstreckentransports nötig

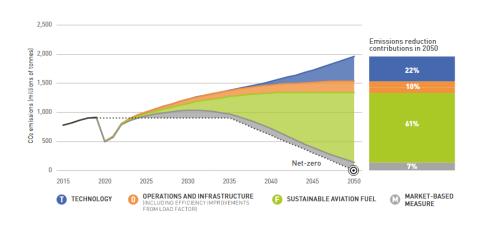
Defossilisierung des Langstreckenverkehrs


- Luft- und Schifffahrtssektor:
 - je 2-3 % der weltweiten CO₂-Emissionen
 - Weniger als 1 % nachhaltige
 Kraftstoffe verwendet
- Branchen setzen sich ehrgeizige THG-Emissionsziele
 - IATA International Air Transport Association: Net Zero in 2050
 - IMO International Maritime
 Organisation: Net Zero in 2050

Vorteile von Biokraftstoffen:


- Flüssige Treibstoffe mit hoher Energiedichte vorteilhaft
- Langlebige Flotten nutzen von bestehender Infrastruktur, Drop-in Fuels
- Schwer elektrifizierbare Sektoren (Schifffahrt, Flugverkehr, Schwertransport)

Weiterführende Literatur



https://task39.ieabioenergy.com/publications-new/

Sustainable Aviation Fuels – Nachhaltige Flugtreibstoffe

- Luftfahrtindustrie 14,4 % der verkehrsbedingten THG Emissionen in der EU und 11 % in den USA
- Erwartetes Wachstum in den kommenden Jahren von ca. 3% jährlich.
- SAF = Potenzial, THG-Emissionen und regionale Nicht-CO₂-Effekte (z. B. Kondensstreifen) zu verringern

Waypoint 2050 – Air Transport Action Group https://aviationbenefits.org/media/167418/w2050_v2021_27sept_summary.pdf

SAF Produktion

- 2022: 273.000 t SAF Produktion (0,1% des globalen Verbrauchs an Flugtreibstoffen)
- Verwendete Technologien:
 - Hydrotreatment
 - Alcohol-to-Jet
 - Gasification FT
 - E-Fuels, E-Fuels Biomass Hybrids

Z.b. Neste (Finland), Total (France), World Biofuels (USA), Gevo (France),

...

Identifizierte Herausforderungen SAF

- Challenge #1 Hohe Produktionskosten von SAF verglichen mit konventionellem Kerosin
- Challenge #2 –Limitierungen und Nachhaltigkeit der Rohstoffe (Biomasse, Reststoffe, Elektrizität)
- Challenge #3 Fehlen eines klaren langfristigen internationalen Rahmens

Hohe Produktionskosten

Rohstoff Limitierungen und Konkurrenz

Fehlender klarer internationaler Rahmen

Ergebnisse des AMF Task 63 SAF

- Umsetzung SAF = wirtschaftliches Problem
- Ehrgeizige Ziele des Luftfahrtsektors Investitionen jetzt nötig
- Preis durch Lernkurve senken Optimierung der Technologien
- Nachhaltigkeit entlang der Wertschöpfungskette gewährleisten

https://iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Task_63.pdf

Zusammenfassung und Ausblick

Chancen von Biotreibstoffen

- Vielfalt an Technologien und Nutzung untersch. Rohstoffe/Reststoffe möglich
- Nutzung bestehender Flotten und Infrastruktur, Drop-in Fuels
- Flüssiger energiedichter Treibstoff für den Langstreckenverkehr
 - → Defossilisierung im Flugverkehr, der Schifffahrt, im Schwerlasttransport
- Herausforderungen müssen überwunden werden
 - o Meisten sind **nicht technologisch** politische, administrative und wirtschaftliche Barrieren
 - Kommerzialisierung muss vorangetrieben werden

Ausblick:

 Momentan Fokus auf SAF und HVO/HEFA, zukünftig auch Gasification FT und ATJ – Markt steigt signifikant an

Nationaler Vernetzungsworkshop Biotreibstoffe Frühjahr 2024

Kontakt

DI (FH) Andrea Sonnleitner Researcher - Biotreibstoffe Nachhaltige Versorgungs- und Wertschöpfungskreisläufe

T + 43 5 02378-9437 andrea.sonnleitner@bestresearch.eu

BEST – Bioenergy and Sustainable Technologies GmbH

www.best-research.eu

https://task39.ieabioenergy.com/

https://www.iea-amf.org/

15 26.09.2023