

REFAWOOD - Reduction of ash-related problems in large-scale biomass combustion systems via resource efficient low-cost fuel additives

Graz, 24.01.2020

Peter Sommersacher

Content

- Introduction and objectives
- Methodology
- Results Effects of additives on
 - flue gas composition
 - particulate matter in the flue gas
 - deposit formation
- Summary and conclusion

Introduction and objectives

- Slagging and fouling in biomass fired boilers leads to shutdowns → Removement of these deposits
 - **Downtime** of the boiler is associated with **enormous costs.**
- Corrosion can damage the heat exchangers
- In order to minimise the slagging tendency and corrosion risk, inexpensive additives can be used.
 - Additives and favourable additive rates were first tested on laboratory scale.
 - Aim: Testing of suitable additives in a large-scale biomass combustion system.

Introduction and objectives

- Plant investigated
 - 40 MW_{th} grate furnace equipped with 3 dust injectors; production of superheated steam
 - Fuel: <u>grate:</u> forest wood chips, bark and waste wood <u>dust burner:</u> dust fractions from the chipboard manufacturing process
 - Problems: slagging in the combustion chamber, slagging and fouling at the heat exchanger, corrosion

Introduction and objectives - Scheme of the biomass CHP plant

Measurement and

sampling points:

FS ... fuel sampling M1 ... deposit probe M2 ... flue gas analysis F M3 ... total dust and aerosol concentrations

5

Introduction and objectives - Photos of problems in the biomass boiler

Protective evaporator from below (in the flow direction, luv) after a system operation of 9 weeks

Rear wall of the 2nd duct against the flow direction after a system operation of 9 weeks

Methodology

- Additive injection above the grate close to the right dust injector
- Measurements
 - Flue gas composition (SO₂, HCI, NO_x, CO); total dust; aerosols
 - Chemical analysis: fuel, bottom ash, total dust and aerosols
 - Deposit formation
 - Deposit probe simulating a heat exchanger tube
 - Determination of built-up rate
 - SEM/EDX analysis for composition of deposits

Methodology - Additive investigations

Additive application

- Reference without additive
- Coal fly ash
- Gypsum
- Amounts of additive provided to the combustion system

Additive	Addition in wt.% related to dry fuel	Addition in kg/min	
Coal fly ash	3	3.92	
Gypsum	2	2.61	

Results - Flue gas composition – Gypsum addition dosing gypsum failure gypsum dosing 60 50 concentrations [ppm] 40 30 20 10 n 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 2,000 60 1.800 1mm Mar 50 dust injection 1,600 1,400 40 1,200 1,000 30 800 20 600 400 10 200 0 0 17:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 18:00 19:00 20:00 21:00 22:00

-dust right [kg/h]

——SO2 - plant internal [ppm]

dust middle [kg/h]

-dust left [kg/h]

Results - Total dust measurements

Total dust concentrations in the flue gas

Results - Total dust measurements

Total dust in the flue gas – chemical composition

- Higher AI und lower K and Zn concentration for coal fly ash addition compared to the reference case without additive.
 - Coal fly ash contains high amounts of AI and reduces the release of K and partly of Zn
- Significantly higher S concentrations and lower Cl concentrations for gypsum addition compared to the reference case without additive
 - Degradation of gypsum in the combustion chamber
 - Formation of $SO_2 \rightarrow$ formation of sulphates instead of chlorides

Results – Aerosol measurements

0

Aerosol concentrations in the flue gas

Results – Aerosol measurements

- Aerosols in the flue gas chemical composition
 - higher S concentrations in the aerosols for gypsum addition
 - degradation of gypsum in the combustion chamber
 - higher Si, Fe and Ca concentrations in the aerosols for coal fly ash addition
 - High Si and rather high Fe concentrations in coal fly ash
 - Iowest K concentration for coal fly ash addition
 - reduced K release by coal fly ash addition

Results - Deposit formation - Built-up rate

Deposit built-up

Highest deposit built-up rate for coal fly ash addition

Result - Deposit formation - Chemical composition

Reference

Up to 4.1% Cl in deposits

Coal fly ash

- Increased Si and Al concentrations
- Reduced Cl content

Gypsum

- Increased S concentrations
- Almost no Cl (< 0.5%)

Results - Deposit formation – high temperature corrosion						
Molar 2S/CI ratios of the deposits						
		reference	coal fly ash	gypsum		
2S/CI depositions	mol/mol	4.2	19.3	75.6		
Moderate to high high temperature corrosion risk for the reference case						
Negligible high temperature corrosion risk for						

additive application, especially for gypsum addition

Summary and conclusions

- Position of additive injection and prevailing boundary conditions in the boiler (dust injection close to the additive injection) influences the precipitation of the additive in the boiler.
 - Additive application must be individually tailored out to each specific combustion system
- Degradation of gypsum in the combustion chamber successful
 - Dust and aerosols comparable to reference case
 - Formation of $SO_2 \rightarrow$ formation of sulfates instead of chlorides
 - Reduced risk for high temperature corrosion

Summary and conclusions

- Increased total dust concentrations for coal fly ash addition
- Increased deposit built-up rate for coal fly ash addition
- Higher S and lower CI concentrations in the depositions for additive application → sulphation → lower high temperature corrosion risk
- Minimised aerosol concentrations for coal fly ash addition
 - Reduced K (and Zn) release ratios

Thank you for your attention!

Peter Sommersacher

peter.sommersacher@best-research.eu http://www.best-research.eu