

Advanced biomass CCHP based on gasification, SOFC and cooling machines Solide oxide fuel cell performance with gases from biomass gasification

Gernot Pongratz

Vanja Subotić, Hartmuth Schroettner, Bernhard Stoeckl, Christoph Hochenauer, Andrès Anca-Couce, Robert Scharler

Highlights of Bioenergy Research 2020

6. Central European Biomass Conference Graz, Austria; January 24th, 2020

Institute of Thermal Engineering, Inffeldgasse 25b, 8010 Graz, Austria, www.iwt.tugraz.at

Biomass to power

Combustion based

- + consolidated technology:
- η_{el} ~15-25% (only for tens of $MW_{th})$

Gasification based

→ State of the art power generator. Gas Engine + robust & flexible & mature → cost-effective - Carnot limitation + gas cooling → η_{el} < 35%

- \rightarrow Alternative power generator: **SOFC**
- + Hot gas usage + no carnot $\rightarrow \eta_{el}$ > 40%
- sensitive to impurities

Hein D., Karl J. (2006): Conversion of biomass to heat and electricity. Energy Technologies: Renewable Energy, Landolt-Boerstein New Series VIII/3C, 374-413

Agenda

Project overview

Methodology and results

Summary & Outlook

Contact: gernot.pongratz@tugraz.at CEBC20, January 2019

SOFC Combined Cold Heat Power plant

- Net efficiency increase with SOFCs
- Overall efficiency increase with
 - Heat usage

BIO-CCHP: Advanced biomass CCHP based on gasification, solid oxide fuel cells and cooling machines

- ERA-NET Bioenergy project (11th Call)
- Coordinator of project: ITE TU Graz
- Scientific and industrial partners from 3 countries
- April 2018 → March 2021

Goals:

- Novel trigeneration system
- Electric efficiency > 40%
- Enhanced fuel flexibility

ERA-NET

Bioenergy

Project goal

Solid Oxide Fuel Cell

- Solid Oxide Fuel Cell
- 600 1000 °C
- H₂ & CO to elecricity
- Internal reforming of CH₄

Degradation

- Sulfur and chlorine
 → poisoning of catalyst
- Low Steam to carbon Ratio (SCR)
 → carbon depositions
- Dependent on celltype

Development challenges SOFC

Cell performance

- carbon deposition
- catalyst poisoning

=f

Operating point

- product gas feed
- temperature
- electric load

Syngas cleaning level

- tar compounds
- sulfur compounds
- chlorine compounds
- dust

SOFC goal

define

optimal SOFC operating conditions and impurity tolerances

to ensure

stable, economic operation

with

maximum efficiency high lifetime

- Experimental studies
- **CFD** simulations

(Computational Fluid Dynamics)

Agenda

Project overview

Methodology and results

Summary & Outlook

Short term testing: Parameter study

Which **ratios** of **carbonaceous species** are advantageous for **FDA/FBS** gas mixtures?

- Cell type with high potential coupling with gasifier
- 50 operating points \rightarrow CO, CO₂ and CH₄ varied
- Electrochemical characterization

vol%w.b.		Infl	uence	CO	Influ	ience (CH4	Influence CO2			2
H ₂	50	50	50	50	50	50	50	50	50	50	50
H ₂ O	25	25	25	25	25	25	25	25	25	25	25
CO	лсе	5	10	25					5		5
CH ₄	ferei				5	10	25			5	5
CO ₂	Ref							15	15	15	15
N ₂	25	20	15		20	15		10	5	5	

Short term testing: Parameter study

- \rightarrow H₂ >> CO = beneficial
- \rightarrow H₂O / CH₄ > 1

- = recommended
- → CH_4 ↑ instead of CO ↑ = recommended
- $\rightarrow CO_2 \downarrow$

= beneficial

vol%w.b.		Infl	uence	CO	Influ	ience (CH4	Influence CO			2
H ₂	50	50	50	50	50	50	50	50	50	50	50
H ₂ O	25	25	25	25	25	25	25	25	25	25	25
CO	лсе	5	10	25					5		5
CH ₄	ferei				5	10	25			5	5
CO ₂	Ref							15	15	15	15
N ₂	25	20	15		20	15		10	5	5	

Results

Thermal Engineering

Fixed bed Downdraft Air (FDA) vs. Fluidized bed Steam (FBS)

- $P_{max_{FBS}} > P_{max_{FDA}}$
- FBS stable for 500 h @ 36% H₂O
- FDA also suitable for SOFC
 - Higher SCR necessary
 - Agent: Air + steam
 - Product gas steam injection

FBS: performance potential **FDA**: suitable with higher SCR

15

Performance degradation H₂S

Simulation of gas cleaning malfunction at stable operation \rightarrow H₂S in fuel gas

- Initial voltage drop ↑
 - T↓
 - H₂S concentration ↑
 - Less tolerant substrate
- Full regeneration up to 10ppm_v

Agenda

Project overview

Methodology and results

Summary

- Beneficial cell type for coupling identified
- High potential of FBS gasifier for coupling with SOFC claimed
- No degradation using steam-rich FBS gases
- Also high potential for FDA, improved with steam + O_2 enriched air

Outlook **Real coupling**

- Coupling of cell with in-house FBS gasifier using
 - 1. sulfur- and tar free gas
 - 2. sulfur free gas
 - 3. raw product gas

Synthetic gas mixtures

- Addition of cell contaminants: H_2S , Thiophene, HCI, Toluene (as tar content)
- Comparison of different cell types

degradation

verification

Institute of Thermal Engineering Graz University of Technology Inffeldgasse 25b/4, 8010 Graz, Austria

Gernot Pongratz

gernot.pongratz@tugraz.at

Acknowledgment:

Highlights of Bioenergy Research 2020 6. Central European Biomass Conference Graz, Austria; January 24th, 2020

Institute of Thermal Engineering, Inffeldgasse 25b, 8010 Graz, Austria, www.iwt.tugraz.at

Project goal

Single cell testing

- Ceramic cell housing
- Commercially available cells with 80cm² active area
- In-situ measurements:
 - IVC, EIS
 - Temperature distribution
- Post-mortem analyses:
 - SEM, EDX
- IVC...current-voltage-curve
- EIS...electrochemical impedance spectroscopy
- SEM...scanning electron microscopy
- EDX... energy-dispersive X-ray spectroscope

Contact: gernot.pongratz@tugraz.at CEBC20, January 2019

Testrig

- Main gas componentes
- Dry/wet operation
- Gas analysis
- Contaminant dosing
 - gaseous
 - liquid + vaporizer

Cell type comparison

- Substrate: Ni/GDC most degradation tolerant commercially available substrate
- **Cell structure**: Failure due to substrate degradation less severe in ESC than in ASC

ESC-SOFC with Ni/GDC anode fuelled with FBS gasifier-like product gas most promising configuration

Ni/GDC...nickel/gadolinium-doped ceria ESC...electrolyte supported cell ASC...anode supported cell

 $ASR = \frac{\Delta U_{loss}}{i} [\Omega cm^2]$...Area specific resistance at i = 300 mA/cm²

OCV...open circuit voltage

Contact: gernot.pongratz@tugraz.at

CH₄

 CO_2

N₂

vol%w.b.		Influ	uence	CO	Influ	ience (CH4	Influence CO2			2
H ₂	50	50	50	50	50	50	50	50	50	50	50
H ₂ O	25	25	25	25	25	25	25	25	25	25	25
СО	лсе	5	10	25					5		5
CH₄	ferei				5	10	25			5	5
CO ₂	Ref							15	15	15	15
N ₂	25	20	15		20	15		10	5	5	

Contact: gernot.pongratz@tugraz.at

CEBC20, January 2019

26

 $ASR = \frac{\Delta U_{loss}}{i} [\Omega cm^2]$...Area specific resistance at i = 300 mA/cm²

OCV...open circuit voltage

Institute of

Thermal Engineering

Institute of

Thermal Engineering

FDA vs. FBS product gas

Product gas of steam-blown fluidized bed gasifier (**FBS**) **compared** to air-blown fixed bed downdraft (**FDA**) gasifier:

vol% w.b.	H ₂	H ₂ O	СО	CO ₂	CH ₄	N_2	SCR	H ₂ /CO	LHV [MJ/Nm ³ w.b.]
FDA	16	15	17	13	3	36	0.8	0.94	4.6
FBS	24	37	15	13	7	4	1.7	1.6	6.5

Bridgwater 1995 / 2009, Pfeifer 2011, internal data

- + higher lower heating value (LHV)
- + higher H_2 / CO ratio \rightarrow less voltage losses expected
- + higher steam-to-carbon ratio (SCR) \rightarrow less carbon deposition risk

Long-term testing: degradation stabilit

Is it possible to run the **cell stable** on a **steamrich** product gas **without nickel re-oxidation** for many hours?

Operating point

- Simulated FBS product gas
- 80% of maximum achievable load
- 500 h stability experiment
- Cell measurements every 2 h

No degradation identified

Degradation analysis

No performance and microscopic substrate **degradation** detected

FBS gas suitable for Ni/GDC SOFC

