Advanced biomass CCHP based on gasification, SOFC and cooling machines
Solide oxide fuel cell performance with gases from biomass gasification

Gernot Pongratz
Vanja Subotić, Hartmuth Schroettner, Bernhard Stoeckl, Christoph Hochenauer, Andrès Anca-Couce, Robert Scharler

Highlights of Bioenergy Research 2020
6. Central European Biomass Conference
Graz, Austria; January 24th, 2020

Institute of Thermal Engineering, Inffeldgasse 25b, 8010 Graz, Austria, www.iwt.tugraz.at
Biomass to power

- **Combustion based**
 + consolidated technology:
 - $\eta_{el} \sim 15-25\%$ (only for tens of MW\(_{th}\))

- **Gasification based**
 → State of the art power generator: **Gas Engine**
 + robust & flexible & mature → cost-effective
 - Carnot limitation + gas cooling → $\eta_{el} < 35\%$

 → Alternative power generator: **SOFC**
 + Hot gas usage + no carnot → $\eta_{el} > 40\%$
 - sensitive to impurities

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Agenda

- Project overview
- Methodology and results
- Summary & Outlook
SOFC Combined Cold Heat Power plant

- Net efficiency increase with SOFCs
- Overall efficiency increase with
 - Heat usage
 - Cold generation

Contact: gernot.pongratz@tugraz.at
xyz, January 2019
BIO-CCHP: Advanced biomass CCHP based on gasification, solid oxide fuel cells and cooling machines

- ERA-NET Bioenergy project (11th Call)
- Coordinator of project: ITE TU Graz
- Scientific and industrial partners from 3 countries
- April 2018 → March 2021

Goals:
- Novel trigeneration system
- Electric efficiency > 40%
- Enhanced fuel flexibility

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Project goal

BIO-CCHP

Project overview

Contact: gernot.pongratz@tugraz.at

CEBC20, January 2019
Solid Oxide Fuel Cell

- **Solid Oxide Fuel Cell**
- 600 – 1000 °C
- H₂ & CO to electricity
- Internal reforming of CH₄

Degradation

- Sulfur and chlorine → poisoning of catalyst
- Low Steam to carbon Ratio (SCR) → carbon depositions
- Dependent on celltype
Development challenges SOFC

Cell performance

Cell degradation
• carbon deposition
• catalyst poisoning

Operating point
• product gas feed
• temperature
• electric load

Syngas cleaning level
• tar compounds
• sulfur compounds
• chlorine compounds
• dust
SOFC goal

define

optimal SOFC operating conditions and impurity tolerances
to ensure
stable, economic operation
with
maximum efficiency
high lifetime

- Experimental studies
- CFD simulations
 (Computational Fluid Dynamics)
Agenda

- Project overview
- Methodology and results
- Summary & Outlook
Literature

Evaluation of relevant
- Product gases
- Impurity amounts
- Cell types
- Substrate
- Structure
 ↓ promising test configuration

Short-term experiments
- H₂, H₂O, CO, CO₂, CH₄ mixtures
 ↓ performance influence

Long-term experiments
- synthetic product gas
 ↓ operation stability

In progress

Short & Long-term experiments
- Real coupling
 ITE gasifier „real“ conditions
 ↓ stability & efficiency

CFD modelling

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Short term testing: Parameter study

- Cell type with high potential coupling with gasifier
- 50 operating points → CO, CO$_2$ and CH$_4$ varied
- Electrochemical characterization

Which ratios of carbonaceous species are advantageous for FDA/FBS gas mixtures?

<table>
<thead>
<tr>
<th>vol% w.b.</th>
<th>Influence CO</th>
<th>Influence CH$_4$</th>
<th>Influence CO$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>CO</td>
<td>5</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Reference</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>CO$_2$</td>
<td></td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>N$_2$</td>
<td>25</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Short term testing: Parameter study

- $\text{H}_2 \gg \text{CO} = \text{beneficial}$
- $\text{H}_2\text{O} / \text{CH}_4 > 1 = \text{recommended}$
- $\text{CH}_4 \uparrow$ instead of $\text{CO} \uparrow = \text{recommended}$
- $\text{CO}_2 \downarrow = \text{beneficial}$

<table>
<thead>
<tr>
<th>vol% w.b.</th>
<th>Influence CO</th>
<th>Influence CH4</th>
<th>Influence CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2</td>
<td>50 50 50 50</td>
<td>50 50 50 50</td>
<td>50 50 50 50</td>
</tr>
<tr>
<td>CH4</td>
<td>5 10 25</td>
<td>5 10 25</td>
<td>5 5</td>
</tr>
<tr>
<td>CO2</td>
<td>15 15 15 15</td>
<td>15 15 15 15</td>
<td>15 15 15 15</td>
</tr>
<tr>
<td>N2</td>
<td>25 20 15</td>
<td>20 15</td>
<td>10 5 5</td>
</tr>
</tbody>
</table>
Fixed bed Downdraft Air (FDA) vs. Fluidized bed Steam (FBS)

- $P_{\text{max,FBS}} > P_{\text{max,FDA}}$
- FBS stable for 500 h @ 36% H_2O
- FDA also suitable for SOFC
 - Higher SCR necessary
 - Agent: Air + steam
 - Product gas steam injection

FBS: performance potential
FDA: suitable with higher SCR

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Performance degradation H$_2$S

Simulation of gas cleaning malfunction at stable operation → H$_2$S in fuel gas

- Initial voltage drop ↑
 - T ↓
 - H$_2$S concentration ↑
 - Less tolerant substrate

- Full regeneration up to 10ppmv
Agenda

- Project overview
- Methodology and results
- Summary & Outlook

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Summary

- Beneficial cell type for coupling identified
- High potential of FBS gasifier for coupling with SOFC claimed
- No degradation using steam-rich FBS gases
- Also high potential for FDA, improved with steam + O₂ enriched air
Outlook

Real coupling

- Coupling of cell with in-house FBS gasifier using
 1. sulfur- and tar free gas
 2. sulfur free gas
 3. raw product gas

Synthetic gas mixtures

- Addition of cell contaminants: H₂S, Thiophene, HCl, Toluene (as tar content)
- Comparison of different cell types

Contact: gernot.pongratz@tugraz.at

CEBC20, January 2019
Gernot Pongratz
gernot.pongratz@tugraz.at

Highlights of Bioenergy Research 2020
6. Central European Biomass Conference
Graz, Austria; January 24th, 2020

Institute of Thermal Engineering
Graz University of Technology
Inffeldgasse 25b/4, 8010 Graz, Austria
Backup
Project goal

BIO-CCHP

Biomass (1000 kW)

Gasifier

Gas cleaning

SOFC

Anode

Cathode

Absorption machine

Recuperator

Flue gas (80°C, 60 kWth)

Heat: 235 kW

Air (20°C, λ=3)

80°C (125 kWth)

800°C (485 kWth)

625°C (485 kWth)

300°C (270 kWth)

550°C (505 kWth)

1050°C (990 kWth)

800°C (125 kWth)

800°C (125 kWth)

800°C (125 kWth)

80°C (125 kWth)

Emission: 75 kW

P_{el, SOFC}: 420 kW

\eta_{SOFC} = 52.5\% (Fuel utilization = 70\%)

\eta_{cold, gasifier} = 80\%

(480 Nm³/h; 6 MJ/m³)

Cold: 170 kW

COP = 0.8 (1-stage)

Off-gas (240 kWchem)

(140 Nm³/h; 1.8 MJ/m³)

Post-combustion

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Single cell testing

- Ceramic cell housing
- Commercially available cells with 80cm² active area
- In-situ measurements:
 - IVC, EIS
 - Temperature distribution
- Post-mortem analyses:
 - SEM, EDX

Methodology

- Mechanical load
- Drillings for Thermocouples
- Air distribution plate
- Pt contact mesh
- Ceramic frame
- Glass seal
- SOFC single cell
- Ceramic frame
- Ni contact mesh
- Gas distribution plate

IVC...current-voltage-curve
EIS...electrochemical impedance spectroscopy
SEM...scanning electron microscopy
EDX... energy-dispersive X-ray spectroscope

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Testrig

- Main gas components
- Dry/wet operation
- Gas analysis
- Contaminant dosing
 - gaseous
 - liquid + vaporizer

Contact: gernot.pongratz@tugraz.at
Cell type comparison

- **Substrate**: Ni/GDC most degradation tolerant commercially available substrate
- **Cell structure**: Failure due to substrate degradation less severe in ESC than in ASC

ESC-SOFC with Ni/GDC anode fuelled with FBS gasifier-like product gas most promising configuration

Ni/GDC...nickel/gadolinium-doped ceria
ESC...electrolyte supported cell
ASC...anode supported cell
Increasing CO fraction

At $\text{H}_2 / \text{CO} < 5$ stagnating power output as CO oxidizes before reacting via WGS to high reactive H_2

$$\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2$$

$\text{H}_2 >> \text{CO}$ beneficial

$\text{ASR} = \frac{\Delta U_{\text{loss}}}{i} \quad [\Omega \text{cm}^2]$

...Area specific resistance at $i = 300 \text{ mA/cm}^2$

OCV...open circuit voltage
Increasing CH₄ fraction

At H₂O / CH₄ < 1 disproportionately high ASR increase as H₂O gets “used up” in methane reforming leading to high voltage losses

CH₄ + H₂O ⇌ CO + 3H₂

H₂O / CH₄ > 1 recommended

\[\text{ASR} = \frac{\Delta U_{\text{loss}}}{i} \quad \text{[Ωcm²]} \]

...Area specific resistance at \(i = 300 \text{ mA/cm}² \)

OCV...open circuit voltage

Contact: gernot.pongratz@tugraz.at
CEBC20, January 2019
Comparing CO with CH₄

\[P(5\% \text{ CH}_4) = P(25\% \text{ CO}) \]
despite 16% smaller LHV

→ \(\eta_{\text{el}} \) increased

small CH₄ amounts preferable to larger CO amounts

\[ASR = \frac{\Delta U_{\text{loss}}}{i} [\Omega \text{cm}^2] \]

...Area specific resistance at
\(i = 300 \text{ mA/cm}^2 \)

OCV...open circuit voltage
Addition of CO2

Even small CO₂ amount turns high reactive H₂ into less reactive CO via WGS → performance decrease

CO + H₂O ⇌ CO₂ + H₂

CO₂ ↓ beneficial

\[
ASR = \frac{\Delta U_{loss}}{i} \quad [\Omega \text{cm}^2]
\]

...Area specific resistance at \(i = 300 \text{ mA/cm}^2 \)

OCV...open circuit voltage
FDA vs. FBS product gas

Product gas of steam-blown fluidized bed gasifier (FBS) compared to air-blown fixed bed downdraft (FDA) gasifier:

<table>
<thead>
<tr>
<th>vol% w.b.</th>
<th>H₂</th>
<th>H₂O</th>
<th>CO</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂</th>
<th>SCR</th>
<th>H₂/CO</th>
<th>LHV [MJ/Nm³ w.b.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA</td>
<td>16</td>
<td>15</td>
<td>17</td>
<td>13</td>
<td>3</td>
<td>36</td>
<td>0.8</td>
<td>0.94</td>
<td>4.6</td>
</tr>
<tr>
<td>FBS</td>
<td>24</td>
<td>37</td>
<td>15</td>
<td>13</td>
<td>7</td>
<td>4</td>
<td>1.7</td>
<td>1.6</td>
<td>6.5</td>
</tr>
</tbody>
</table>

+ higher lower heating value (LHV)
+ higher H₂ / CO ratio → less voltage losses expected
+ higher steam-to-carbon ratio (SCR) → less carbon deposition risk

Bridgwater 1995 / 2009, Pfeifer 2011, internal data
Long-term testing: degradation stability

Is it possible to run the cell stable on a steam-rich product gas without nickel re-oxidation for many hours?

Operating point

- Simulated FBS product gas
- 80% of maximum achievable load
- 500 h stability experiment
- Cell measurements every 2 h

No degradation identified

Contact: gernot.pongratz@tugraz.at
Degradation analysis

No performance and microscopic substrate degradation detected

FBS gas suitable for Ni/GDC SOFC

Contact: gernot.pongratz@tugraz.at

Results: Degradation stability