# IEA Bioenergy

# **IEA Bioenergy Task 33**

Gasification of biomass and waste



Dr. Jitka Hrbek

University of Natural Resources and Life Sciences Vienna (BOKU))

Photo: SYNCRAFT®Werk Beta / <mark>Vi</mark>erschach / South Tyrol / Italy

6. CEBC, 24.1.2020, Graz









IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries.





# Content

- IEA Bioenergy Task 33 "Gasification of Biomass and Waste"
- Task activities in last Triennium
- Outlook





# IEA Bioenergy Task 33 "Gasification of Biomass and Waste"

Task 33 is a working group of international experts with the aim to promote the commercialization of efficient, economical and environmentally preferable thermal biomass and waste gasification processes.

#### TRIENNIUM 2019-2021

### Member countries

- Austria
- Germany
- Italy
- Netherlands
- Sweden
- UK
- USA

#### Task Leader:

Berend Vreugdenhil, TNO

#### Task Co-Leader:

Dr. Jitka Hrbek, BOKU

# Austrian representatives

Dr. Jitka Hrbek Prof. Christoph Pfeifer, BOKU Vienna

Bodenkultur Wien



# WV

DATE COUNTRY



#### Welcome

Task 33 is a working group of international experts with the aim to promote the commercialization of efficient, economical and environmentally preferable thermal biomass gasification processes.

#### DISCLAIME

The Task 33 / Thermal Gasification of Biomass, also known as the Task 33 / Thermal Gasification of Biomass, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of

| 2018 | Austria<br>(pdf 2,8 MB)                                               | J. Hrbek, <i>BOKU</i>                                          | 25.11.2019 |
|------|-----------------------------------------------------------------------|----------------------------------------------------------------|------------|
| 2019 | Denmark<br>(pdf 2,1 MB)                                               | M. T. Hansen, Ea Energy<br>Analyses                            |            |
| 2008 | Finland<br>(pdf 876 KB)                                               | I. Hannula, VTT                                                | 25.11.2019 |
| 2019 | Germany<br>(pdf 3,2 MB)                                               | T.Kolb, M. Eberhard, KIT                                       | 25.11.2019 |
| 2019 | Italy<br>(pdf 6,8 MB)                                                 | Donatella Barisano, ENEA                                       | 25.11.2019 |
| 2012 | Japan<br>(pdf 612 KB)                                                 | M. Morita, <i>NEDO</i> ; T. Ogi,<br><i>AIST</i>                |            |
| 2013 | The Netherlands (pdf 2,1 MB)                                          | B. Van der Drift, B.<br>Vreugdenhil, <i>ECN</i>                | 25.11.2019 |
| 2012 | New Zealand<br>(pdf 611 KB)                                           | Shu-sheng Pang,<br>Univ. of Canterbury                         |            |
| 2015 | Norway<br>(pdf 230 KB)                                                | R. Khalil, J. Sandquist,<br>SINTEF                             |            |
| 2019 | Sweden<br>(pdf 4.3 MB)<br>Annex Report<br>(1997-2009)<br>(pdf 1.6 MB) | L. Waldheim, <i>WAC</i>                                        | 25.11.2019 |
| 2015 | Switzerland<br>(pdf 197 KB)                                           | M. Rueegsegger, ETECA<br>GmbH (Ltd)                            |            |
| 2006 | United Kingdom<br>(pdf 322 KB)                                        | Nick Barker, Future Energy<br>Solutions                        | 25.11.2019 |
| 2011 | Turkey<br>(pdf 124 KB)                                                | S. Gul, H. Karatas, <i>TUBITAK</i>                             |            |
| 2019 | USA<br>(pdf 7.83 MB)                                                  | K. Whitty, <i>University of Utah</i> , B. Baldwin, <i>NREL</i> | 25.11.2019 |

**AUTHOR** 

LAST

UPDATE







# IEA Bioen Date, Location WEI

# www.task33.i



#### Welcome

Task 33 is a working group of international experts with the aim to promote the commercialization of efficient, economical and environmentally preferable thermal biomass gasification processes.

24. January 2020, Graz, Austria

>>> Read more

The Task 33 / Thermal Gasification of Biomass, also known as the Task 33 / Thermal Gasification of Biomass, functions within a framework created by the International Energy Agency (IEA). Views, findings and publications of

# Latest Update:

2019-12-02 | Events IEA Bioenergy Task 44 Worksho

Germany

|   | Date, Location                                    | tronkshop topic                                                                    | riies (par)                                                        |
|---|---------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|   | 26. November 2019<br>Birmingham<br>UK             | Waste gasification                                                                 | Workshop presentations                                             |
| i | 06. June 2019<br>Karlsruhe<br><b>Germany</b>      | Gas cleaning, experiences, new developments, analytics and diagnostics             | Workshop presentations<br>WS - Report                              |
|   | 0609. November<br>2018<br>San Francisco<br>USA    | ABLC Global Conference 2018                                                        | Conference                                                         |
|   | 08. May 2018<br>Petten<br><b>the Netherlands</b>  | Waste gasification                                                                 | Workshop presentations<br>WS - Report                              |
|   | 24. October 2017<br>Skive<br><b>Denmark</b>       | Fluidized bed conversion of biomass and waste                                      | Workshop presentations<br>WS - Report<br>Site visits presentations |
|   | 03. May 2017<br>Innsbruck<br><b>Austria</b>       | Small scale gasification for CHP                                                   | Workshop presentations<br>WS - Report                              |
|   | 26. October 2016<br>Lucerne<br>Switzerland        | Gas Sampling, Measurement and Analysis<br>(GSMA) in Thermal Gasification Processes | Workshop presentations<br>WS - Report                              |
|   | 25. May 2016<br>Trondheim<br><b>Norway</b>        | Aviation Biofuels through Biomass Gasification                                     | Workshop presentations<br>WS - Report                              |
|   | 2729. October<br>2015<br>Berlin<br><b>Germany</b> | IEA Bioenergy Conference 2015                                                      | Conference proceedings                                             |
|   | 11 - 13<br>May 2015<br>Ponferrada<br><b>Spain</b> | Symposium on Renewable Energy and<br>Products from Biomass and Waste               | Workshop (Symposium presentations) Poster proceedings              |
|   | 03 - 05<br>November 2014<br>Karlsruhe             | "Liquid biofuels"                                                                  | Workshop<br>WS - Report                                            |

Files (pdf)

Workshop topic



## www.task33.ieabioenergy.com



#### Welcome

Task 33 is a working group of international experts with the aim to promote the commercialization of efficient, economical and environmentally preferable thermal biomass gasification processes.

# Latest Updates

2019-12-02 | Events

IEA Bioenergy Task 44 Workshop on Flexible Bioenergy

24. January 2020, Graz, Austria

>>> Read more

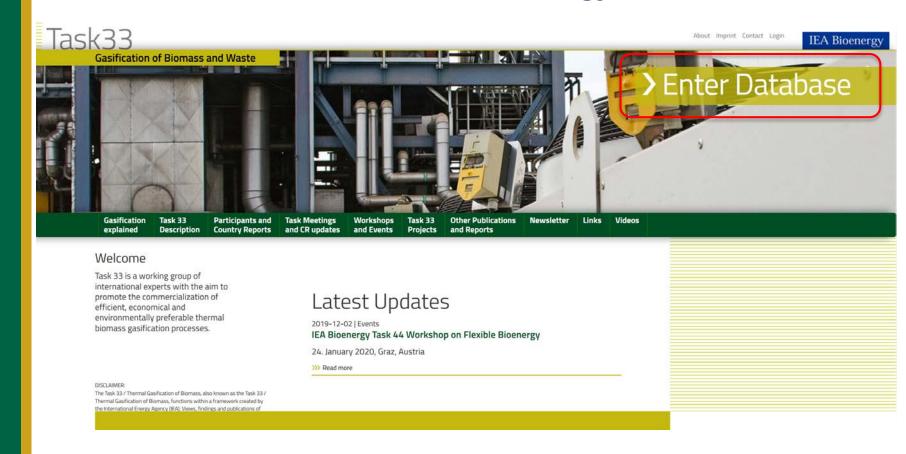
2019-10-07 | Events

10. Internationale Anwenderkonferenz Biomassevergasung

10.12, 2019, MCI Innsbruck, Austria

The conference will be held in German language.

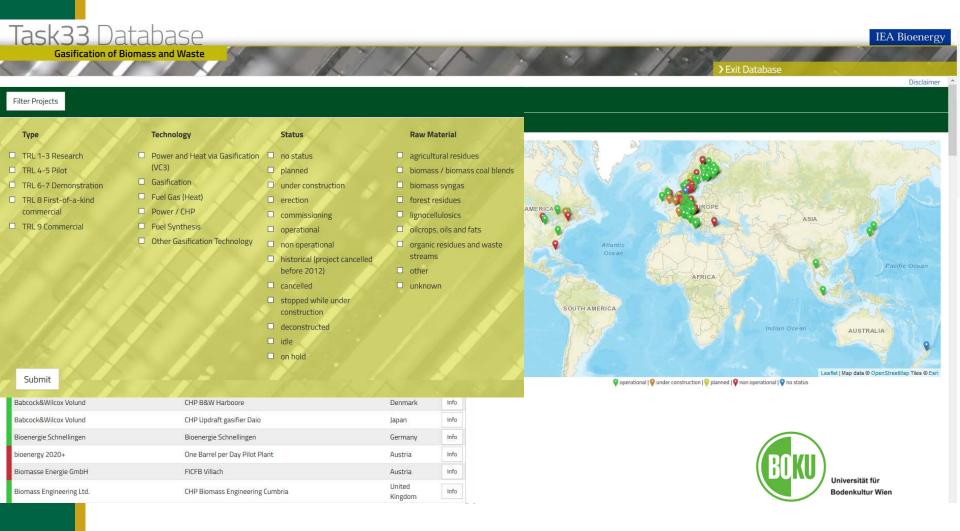
>>> Read more


#### DISCLAIMER:

The Task 33 / Thermal Gasification of Biomass, also known as the Task 33 / Thermal Gasification of Biomass, functions within a framework created by the International Energy Agency (EA), Wess, findings and publications of Task 33 / Thermal Gasification of Biomass do not necessarily represent the views or policies of the IEA Secretariat or of all its individual member countries.

|         | IEA BIOENERGY TASK 33 REPORTS                                                                             |                                                      |
|---------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|         | ILA DIOLININATI IAON DO REPORTO                                                                           |                                                      |
| Date    | Publication                                                                                               | Annex                                                |
|         |                                                                                                           | Annex 1 - CHP operational facilites                  |
|         |                                                                                                           | Annex 2 - CHP non operational facilities             |
|         | Status report on thermal gasification of biomass and                                                      | Annex 3- Fuel synthesis operational                  |
| 10/2019 | waste 2019                                                                                                | Annex 4 - Fuel synthesis non operational             |
|         |                                                                                                           | Annex 5 - Other gasif.<br>technology operational     |
|         |                                                                                                           | Annex 6 - Other gasif.<br>technology non operational |
| 08/2019 | Lessons learned about thermal biomass gasification                                                        | Historical documents                                 |
| 02/2019 | InterTask project Biomass pre-treatment for bioenergy, Case study 3: Pretreatment of MSW for gasification |                                                      |
| 12/2018 | Gasification of waste for energy carriers                                                                 |                                                      |
| 12/2018 | Hydrogen from biomass gasification                                                                        |                                                      |
|         |                                                                                                           | Annex 1- Market for carbon and charcoal              |
| 11/2018 | Valorisation of by-products from small scale thermal                                                      | Annex 2- Analytics                                   |
|         | gasification                                                                                              | Annex 3- Charcoal                                    |
|         |                                                                                                           | Annex 4- Dust, ash                                   |
| 10/2018 | Thermal gasification based hybrid systems                                                                 |                                                      |
| 09/2018 | Gas analysis guideline report - part I and part II                                                        |                                                      |
| 07/2018 | Implementation of bio-CCS in biofuels production                                                          |                                                      |
|         |                                                                                                           | <u> </u>                                             |

# IEA Bioenergy Task 33


### www.task33.ieabioenergy.com



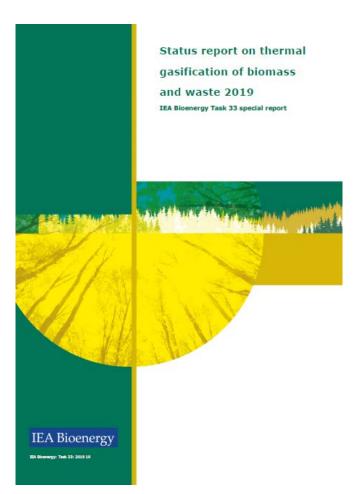
# IEA Bioenergy Task 33

# Gasification of biomass and waste

www.task33.ieabioenergy.com



# IEA Bioenergy Task 33 www.task33.ieabioenergy.com


### Last Triennium Task projects (selection)

- Status report 2019
- Gasification based hybrid systems
- Gasification of waste for energy carriers
- Valorization of by-products from small scale thermal gasification





# Status report 2019



Implementation of gasification projects in Task 33 member countries (last Triennium)

#### Countries included:

- Austria
- Denmark
- Germany
- Italy
- The Netherlands
- Norway
- Sweden
- Switzerland
- USA





# **IEA Bioenergy Webinar**

Connect to the webinar at: https://meet80114613.adobeconnect.com/rim08cdsh89u/

Date: 30. January 2020

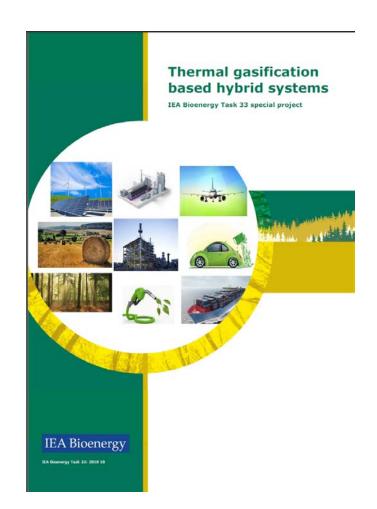
Time: 4-5 pm (Centr.Europ.time)



#### **IEA Bioenergy** WEBINAR SERIES The past, present and future for biomass gasification January 30, 2020 4:00 pm - 5:00 pm Central European Time 10:00 am - 11:00 am North American Eastern Standard Time 3:00 pm - 4:00 pm Greenwich Mean Time Berend Vreugdenhi University of Natural Resources and Life Sciences Vienna Innovation Manager Gasification Senior Scientist, Institute for Chemical Gas Cleaning and Upgrading and Energy Engineering **Presentation Summary** Gasification has a long history with ups and downs regarding successes. An important factor in the success perception of gasification is related to the expectations of gasification. In this webinar we will show that gasification is a versatile technology with many possible outlets and that there are many success stories to be told. We will also discuss some of the learnings from the past decades to illustrate how sometimes a technology fails to be successful. All in all, the future of gasification is looking bright and this we will also elaborate upon. However, with a warning that we must remain realistic about what is needed to reach success! The IEA Bioenergy Technology Collaboration Programme (IEA Bioenergy TCP) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally authormous. Views, findings and publications of the IEA Bioenergy TCP do not necessarily epresent the views or policies of the IEA Secretariat or its individual member Connect to the webinar at: https://meet80114613.adobeconnect.com/rim08cdsh89u/ Unable to attend the live lecture? Lectures will be recorded and archived for later viewing at https://www.ieabioenergy.com/iea-publications/webinars/ In Collaboration with: All electronic lectures are free

For technical issues: ieabioenergy@etaflorence.it

Tel. +39 055 5002280


renewableenergies



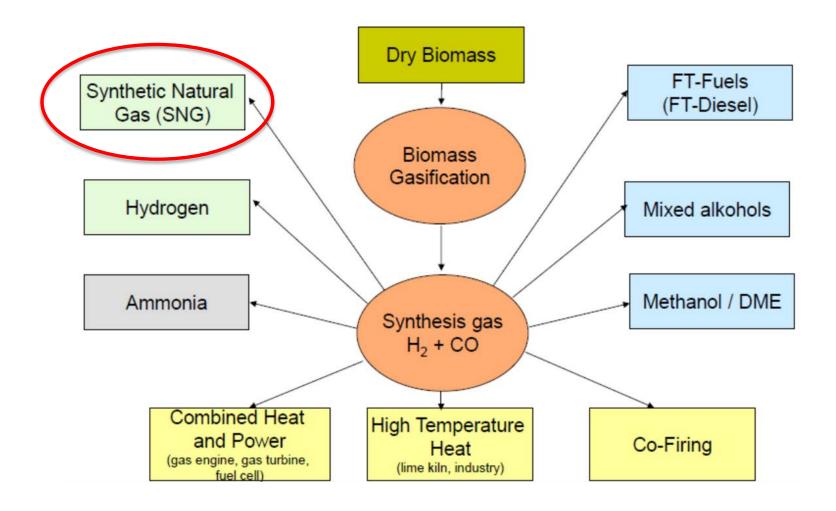
IEA Bioenergy

Technology Collaboration Programme

# Gasification based hybrid systems PtG & PtL



- 1. Energy Strategy 2020, 2030, 2050
- 2. Future potential of biomass
- 3. Thermal gasification explanation
- 4. Solar and wind power energy
- 5. Storage of fluctuating energy Power to Gas
  - -explanation+economics
  - -projects


Power to Liquids

- -explanation+advantages
- -projects





# Power to Gas





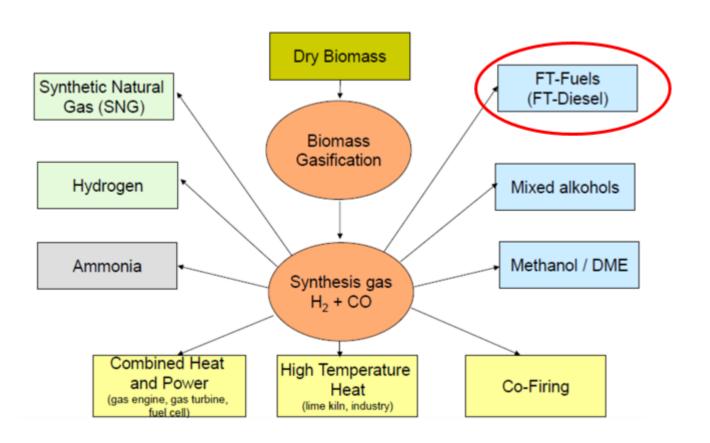
#### **PtG** Electrolysis H<sub>2</sub>:CO = 3:1 WGS $CO + H_2O \longleftrightarrow CO_2 + H_2$ $CO + 3H_2 \longleftrightarrow CH_4 + H_2O$ $C_2H_6 + 2H_2O \longleftrightarrow 2CO + 5H_9$ Methanation $C_3H_8 + 3H_2O \longleftrightarrow 3CO + 7H_2$ $(CO_2 + 4H_2 \longleftrightarrow CH_4 + 2H_2O)$ HO .and byproducts FT- $[CO + 2H_2]_n \longleftrightarrow [-CH_2-]_n + nH_2O$ synthesis Product gas H<sub>2</sub>:CO ≈ 2:1 H<sub>2</sub>:CO = 2:1 CO .and byproducts **Biomass** gasif Product gas $H_2:CO \approx 0.5:1 - 1.0:1$

A system consists of double-bed steam gasifier and electrolyser for production of methane (PtG)

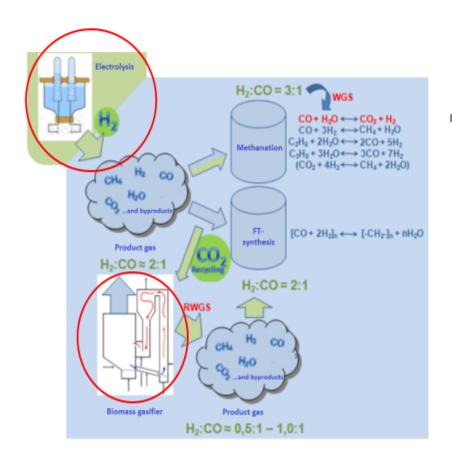
During the steam gasification a gas with  $H_2$ : CO = 2 ratio is produced, but for methanation a gas with ratio  $H_2$ : CO = 3 is necessary, it means further hydrogen from electrolyser is needed.

### Advantage:

Coupling the thermal gasification of biomass with hydrogen from electrolysis can doubled the production of renewable fuels in comparison if only product gas from gasification is used.


# Advantages of gasification integration into PtG systems

- Total carbon exploitation from biomass can be more than doubled
- Higher overall process efficiency (larger product yield and possibility of heat integration)
- O<sub>2</sub> from electrolysis can be used for gasification
- By adding hydrogen from electrolysis, the use of the water-gas shift reaction can be avoided
- Large H<sub>2</sub> storage can be avoided
- By non-available surplus electricity, the methanation can be operated with synthesis gas from gasification only





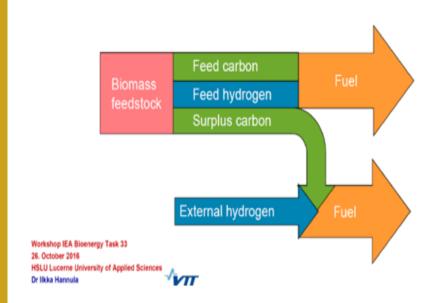

# **Power to Liquids**



# PtL (FT products)



|                   | Compound        |                    | Air gasification | Oxygen<br>gasification<br>Entrained flow | Steam<br>gasification<br>Fluidized bed |
|-------------------|-----------------|--------------------|------------------|------------------------------------------|----------------------------------------|
|                   | CO              | Vol. %             | 13-18            | 45-55                                    | 25-30                                  |
| $\Longrightarrow$ | CO2             | Vol. %             | 12-16            | 10-15                                    | 20-25                                  |
|                   | H <sub>2</sub>  | Vol. %             | 11-16            | 23-28                                    | 35-40                                  |
|                   | CH <sub>4</sub> | Vol. %             | 2-6              | 0-1                                      | 9-11                                   |
|                   | N <sub>2</sub>  | Vol. %             | 45-60            | 0-1                                      | 0-5                                    |
|                   | Calorific value | MJ/Nm <sup>3</sup> | 4-6              | 10-12                                    | 12-14                                  |


Source: A.V. Bridgwater, H. Hofbauer, S. van Loo: Thermal Biomass Conversion, 2009, ISBN 978-1-872691-53-4

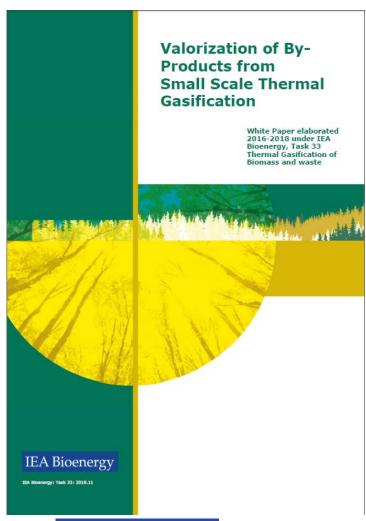
A system consists of two bed steam gasifier and electrolyser for production of methane (PtG) or FT-products (PtL).

During the steam gasification a gas with  $H_2$ : CO = 2 ratio is produced, which is optimal for FT-synthesis.

By FT synthesis is the usage of additional hydrogen from electrolyser a little bit different. The principle is based on  $CO_2$  recycling, it means, the inert  $CO_2$  will not be released to the atmosphere, but it will serve as an additional fluidizing agent in the gasification unit as a carbon source for further reactions with hydrogen from electrolysis.

# **Advantages**




Using of additional (external) hydrogen the FT products amount could be doubled

# Advantages:

- Conversion of surplus electricity and surplus carbon to high valuable products
- Higher carbon utilization
- Biomass acts as base load (8000 oph/y possible), no start-stop operation, only load change



# Byproducts from thermal gasification



Annex 1

October 2018

Market for Carbon, Charcoal activated Coal Valorization of by-products from small scale gasification

Annex 2

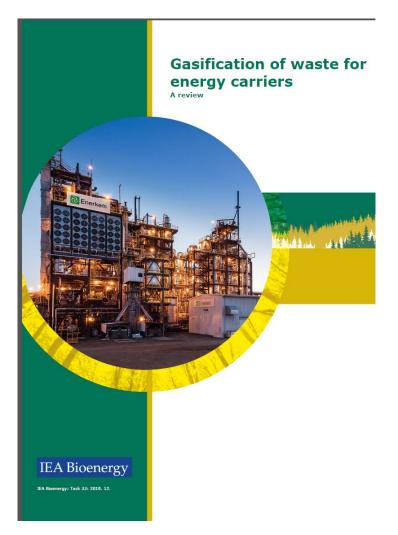
Analytic, Checks, Tests and Examples of Coal containing residues and by-products out of small-scale thermo-chemical wood gasification CHP plants

Annex 3

CHP small-scale CHP Unit examples build for charcoal production October 2018

Annex 4 Research Activities

Valorization of by-products from small scale CHP thermal gasification


## **Charcoal market**

|               |                     | -         |                |                 |             |
|---------------|---------------------|-----------|----------------|-----------------|-------------|
| Carbon        | Production          | Coming    | Raw material   | General<br>. ·  | Brand names |
| utilization   | by                  | from      |                | expretions      |             |
| Filter        | gasification        | biomass   | wood           | Activated       | Donaucarbon |
| absorber      | pyrolyze            |           |                | carbon          | Silcarbon   |
| Agriculture   | gasification        | biomass   |                | (Pflanzenkohle) | Verora      |
| Gardening     | pyrolyze            | «Biochar» |                | BIOCHAR*        | Egos        |
| Soil          | lignite             |           |                |                 |             |
| improvement   | grinded             | fossil    |                |                 |             |
| BBQ           | gasification        |           | wood           | BBQ coal        |             |
|               | pyrolyze            |           |                | charcoal        |             |
|               | lignite             |           | fossil coal    |                 |             |
|               | grinded and pressed |           |                |                 |             |
| Metal         | gasification        | biomass   | Wood           | Lignite         |             |
| production    | pyrolyze            | fossil    | Coal           | Carbon          |             |
|               | lignite             |           | lignite        |                 |             |
|               | grinded             |           |                |                 |             |
| Energy        | gasification        | fossil    | biomass        | Biomass         |             |
|               | lignite             | biomass   | all type of    | Coal            |             |
|               |                     |           | carbon Lignite |                 |             |
| Animal food   | pyrolyze            | biomass   |                |                 |             |
| Medical human | pyrolyze            | biomass   |                |                 |             |

© ETECA GmbH



# Waste gasification for energy carriers



### Comprehensive review

- Waste as a feedstock (Charakterisation and Standards)
- Waste in EU, Japan, USA overview
- Waste policy (EU, Japan, USA)
- Gasification technologies
- Gas cleaning
- Facilities examples
- Products from waste gasification

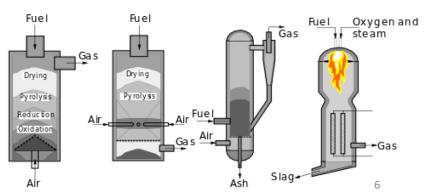


## Waste gasification – new ways?

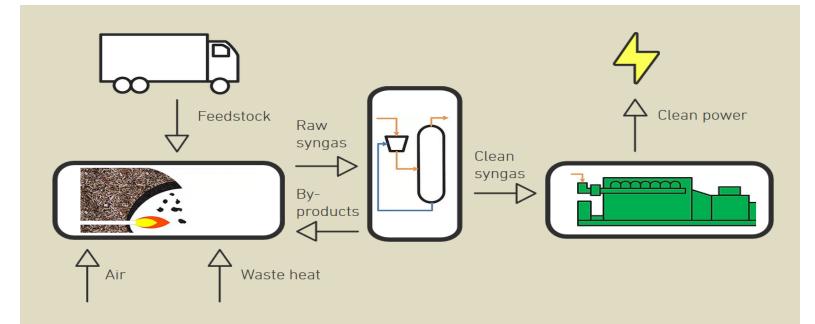
# MIHG: A New Concept



➤ MIHG is fundamentally different to all existing designs


#### Moving Injection Horizontal Gasification (MIHG)

Move the Air to the Feedstock




#### **Existing Gasification Technologies**

 Move the Feedstock to the Air





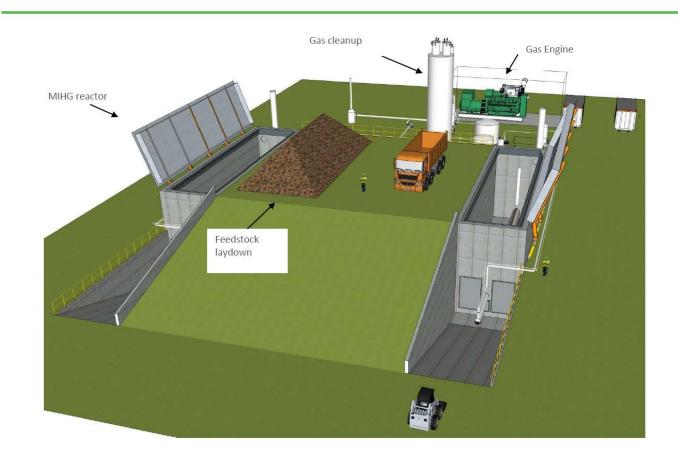


#### MIHG Reactor

- Feedstock is loaded
- Reactor is closed
- Feedstock is ignited
- Air injection point is slowly retracted to gasify the fuel
- Reactor is opened and reloaded

#### Gas Cleanup

- Raw syngas is cleaned using proven technology
- By-products are recycled to MIHG reactor


#### Gas Engine

- Clean syngas is converted to power using proven gas engine technology
- Renewable baseload power is supplied to customer or grid
- Optional cogeneration of heat and power or production of hydrogen and biofuels



# MIHG: 2 MWe Plant





# **Benefits of MIHG**

#### (moving injection horizontal gasification)



- No feedstock pre-treatment
  - Batch loading avoids the need for pre-treatment
  - Attractive to waste management operators
- Reliable operation
  - Batch loading eliminates problematic feeding and ash removal systems
  - Long run time between batch changeover
  - Moving injection provides stable, high efficiency gasification
- Reduced costs
  - Simple construction using low cost materials
  - Combined storage, drying and gasification in the MIHG reactor
  - Moving injection enables recycling of byproducts



# **Outlook**

### Planned Task projects for actual Triennium 2019-21

Emerging technologies for biomass and waste

(molten bath gasification, reforming gasication, thermal plasma, etc.)

- Sweden leading
- Status Report

update of the Report 2019, also non-member countries incl.

- Austria leading
- Bioenergy for high temperature heat in industry

Intertask Projekt mit T 32, 34, 36, 40

Case study on ESKA gasifier

- Gasification for the application in biorefineries
  - Austria leading





# Gasification for the application in biorefineries

(actual Task 33 project)

#### Content

- Overview on biorefinery scenarios
- Definition of feedstock streams available
- Definition of gasification concepts
- Techno-economic assessment of most promising scenarios
- Decision making tool available a clear overview
- Definition of open questions and interfaces to other IEA Bioenergy Tasks (e.g. Task 42)





# Conclusions

- Gasification of waste became more important, but research in this field is still needed
- Byproducts from gasification e.g. charcoal offer great benefits
- The combination of gasification with other technologies (e.g. PV, wind power) could be the way for the future



















# Thank you!

Dr. Jitka Hrbek

**Contact Details** 

Jitka.Hrbek@boku.ac.at

Prof. Christoph Pfeifer

Christoph.Pfeifer@boku.ac.at

www.ieabioenergy.com www.task33.ieabioenergy.com