

iets

International Cooperation for Know-How Transfer

IEA IETS ANNEX 15 INDUSTRIAL EXCESS HEAT RECOVERY

René Hofmann and Anton Beck

20.3.2018, Highlights der Energieforschung, TUtheSky, Wien

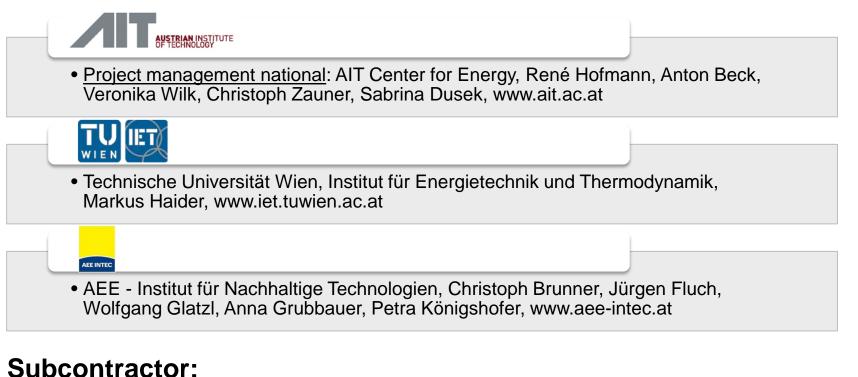
Annex Manager

Prof. Thore Berntsson (Energy and Environment, Chalmers University of Technology) http://www.iea-industry.org/ongoing-annexes/annex-15.html

ExCo Delegate Elvira Lutter, Klimafonds, Österreich

Participating Countries

Denmark, Germany, Norway, Austria, Portugal, Sweden, (Canada, France, Italy)


Phase 2 started 10/2016-09/2018; Subtasks

- **Subtask 1**: In-depth evaluation and inventory of excess heat levels
- Subtask 2: Methodology on how to perform an inventory in practice
- **Subtask 3**: Possible policy instruments and the influence on future use of excess heat
- Subtask 4: Technology Development

IEA-IETS Annex 15-2 Industrial Excess Heat Recovery

National partners - Project Team:

AEE INTEO

ENERGIEINSTITUT
an der Johannes Kepler Universität Linz

• Energieinstitut - JKU, Simon Moser, Horst Steinmüller, www.energieinstitut-linz.at

IEA-IETS Annex 15-2 Industrial Excess Heat Recovery

Situation:

Climate goals

• Progress in energy-related technologies is of great importance for the achievement of collective goals of energy security, environmental protection and economic and social development.

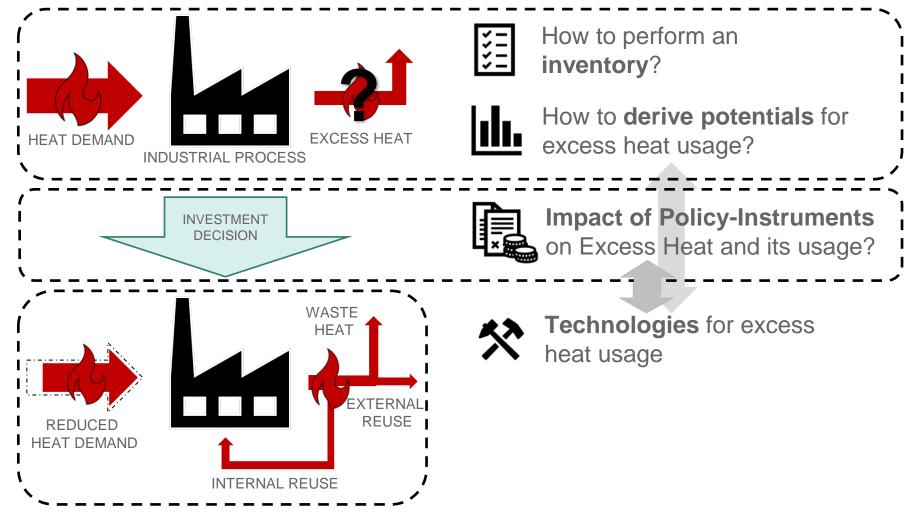
Visibility and Know-How Transfer

 Participation allows access to valuable know-how as well as increased visibility in an international environment. At the international level, the industrial location of Europe is strengthened through close cooperation and the transfer of knowledge.

Goals and Methods

- Integrate Austrian research institutions into the international network.
- Information exchange.
- Initiation of international projects
- Development of new cooperations / partnerships in industry / research.
- Offer and expand existing know-how.

/-related Technologies and Systems


Annex Time-Line

Stakeholder Workshop:

Target groups: industry, technical bureaus, process automation, public decision makers, funding agencies, consulting agencies, etc. Date: TBA

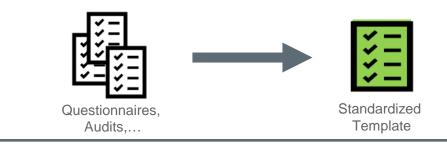
IEA-IETS Annex 15-2 Industrial Excess Heat Recovery

iets

AEE INTEC

STRIAN INSTITUTE

-related Technologies and Systems



AEE INTEC

How to perform an inventory?

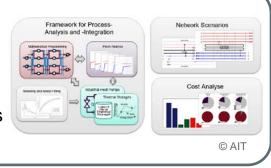
Development of a standardized evaluation template for industrial excess heat

- Based on available excess heat potential studies
 - Checklist for energy audits (based on IEE projects EINSTEIN and GREENFOODS, linked to EN16247)
 - Excess heat cadaster Graz and Styria methodology
 - Method developed on statistical data (project IntegrCiTy)
 - Comparison with international studies (mainly Germany and Sweden) with different approaches as basis for potential standardized template

© AEE INTE

How to **derive potentials** for excess heat usage?

SOCO - Storage Optimization Concept SolarSOCO – Integration of system supply


- System design based on processes and time depending load profiles
- \checkmark Identification, simulation and design of HEN + storages
- Integration of renewable energies

SOCO – Storage Optimisation Concepts in Industries, Commerce and District Heating Businesses Jürgen Fluch, Christoph Brunner, Bettina Muster-Slawitsch; CHEMICAL ENGINEERING TRANSACTIONS; (2012) *Based on Tool SOCO – Model and Measures Identified; Juergen Fluch, Christoph Brunner, Bettina Muster-Slawitsch, Christoph Moser, Hermann Schranzhofer, Richard Heimrath; CHEMICAL ENGINEERING TRANSACTIONS; (2013)

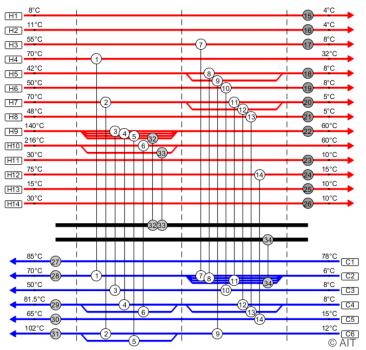
Process Integration Framework

- ✓ Multi-Period Heat Integration
- ✓ Cost-optimal design of heat exchangers
- ✓ Cost-optimal design of heat storages and heat-pumps
- ✓ Retrofitting, DH integration

^{*}A. Beck, R. Hofmann: "A Novel Approach for Linearization of a MINLP Stage-Wise Superstructure Formulation"; Computers & Chemical Engineering, 112 (2018), 112; S. 17 - 26.

^{*}A. Beck, R. Hofmann: "*How to* tighten a commonly used MINLP superstructure formulation for simultaneous heat exchanger network 8 synthesis"; Computers & Chemical Engineering, 112 (2018), 112; S. 48 - 56.

I		
I		_
L		


How to **derive potentials** for excess heat usage?

Example: Dairy Factory (AEE INTEC)

Comparison of AIT PI Framework (Mathematical Programming) & (Solar)SOCO

- 37 Process streams
- Changing operating states
- Stream data for 3 weeks
- Storage integration
- Heat exchanger network synthesis

AEE INTEC

TAC = 189643 €/a; Storage Mass: 16.39 t - m³

RIAN INSTITUTE

related Technologies and Systems

ated Technologies and System

How to **derive potentials** for excess heat usage?

ANNEX 15/2 WORKSHOPS ON PINCH-METHODOLOGY 27. SEPTEMBER 2017 & 25. JANUARY 2018 - AIT

Program:

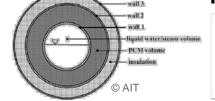
- Advanced pinch methods for analysis of industrial process energy systems.
- Applications for identifying opportunities for
 - internal heat recovery;
 - excess heat usage;
 - heat pumping;
 - thermal energy storage

Impact of Policy-Instruments on Excess Heat and its usage?

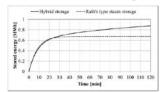
Target: Development of tailor-made policy instruments for the optimised enforcement of excess heat recovery in industry

- Identification of currently applied policy instruments concerning the enforcement of excess heat recovery in industries based on previous projects from AEE INTEC and ENERGIEINSTITUT
- Internal recovery and External usage
- Analysis is conducted for the EU and IEA IETS Annex 15 member states; Austria in more detail
- Result: listing identified policy instruments by category, including (when applicable) relevant design details

Assessment matrix


- Definition of dimensions/criteria for the assessment of policy instruments enforcing excess heat recovery
- Evaluation of the individual and combined application of policy instruments based on microeconomic theory
- Application of the assessment matrix to identified policy instruments
- Input of achieved results in the survey conducted (AEE INTEC)

Technologies for excess heat usage

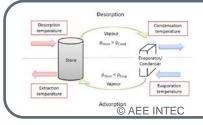

Thermal Energy Storages

Hybrid Energy Storage

AEE INTEC

30% more stored energy in the hybrid storage compared to Ruth's steam accumulator

*S. Dusek, R. Hofmann: "A Hybrid Storage Concept for Improving Classical Ruths Type Steam Accumulators", TALK SDEWES 2017, 12th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES Conference, Dubrovnik, ISSN 1847-7178.


Latent Heat Energy Storages

PCM: HDPE (Tmelt ~ 135°C)

*C. Zauner, F. Hengstberger, B. Mörzinger, R. Hofmann, H. Walter: "*Experimental characterization and simulation of a hybrid sensible-latent heat storage*"; Applied Energy, 189 (2017), 506 - 519.

*C. Zauner, F. Hengstberger, M. Etzel, D. Lager, R. Hofmann, H. Walter: "*Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PMC*"; Applied Energy, 179 (2016), 237 - 246.

Seasonal Sorption Storage

Summer – desorption Winter – adsorption High energy density, only losses while charging/discharging

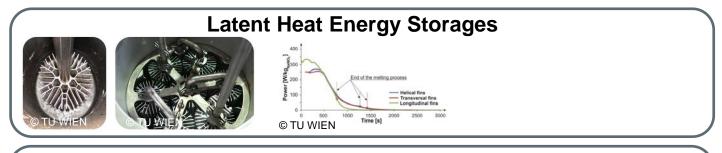
related Technologies and Systems

Technologies for excess

heat usage

Thermal Energy Storages

K-Project GSG – GreenStorageGrid


Active Fluidization Technology

AEE INTEC

Fluidization of Fine Particle Powders Self stabilizing Nozzle-Distributor Floor Modular Design

elated Technologies and Systems

Passive Regenerators

© TU WIEN

Heating power: P = 15 kWth Max. temperature: Tmax = 300 ° C Max. volume flow: Vmax = 100 m3/h

*P. Steiner, K. Schwaiger, M. Haider, H. Walter, L. Krassini1, J. Gatterer : Experimental Investigations on a 280 kWth Fluidized Bed Heat Exchanger SolarPACES Conf 2017. *Mayrhuber, H. Walter, M. Hameter: "Experimental and Numerical Investigation on a Fixed Bed Regenerator"; in: "Proceedings of the 10th International Conference SEEP", ISBN: 978-961-286-061-5.

*M. Koller, H. Walter, M. Hameter: "Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing the Heat Transfer"; 13 ENERGIES, 9 (2016).

*H. Walter, A. Beck, M. Hameter: "Influence of the Fin Design on the Melting and Solidification Process of NaNO3 in a TES System"; J. of Energy & Power Eng., 9 (2015).

THANK YOU

AIT, Center for Energy, Thermal Energy Systems Giefinggasse 2 | 1210 Vienna | Austria Rene.Hofmann@ait.ac.at | www.ait.ac.at

