International Cooperation for Know-How Transfer

IEA IETS ANNEX 15 INDUSTRIAL EXCESS HEAT RECOVERY

René Hofmann and Anton Beck

20.3.2018, Highlights der Energieforschung, TUtheSky, Wien
IEA-IETS Annex 15-2 Industrial Excess Heat Recovery

Annex Manager
Prof. Thore Berntsson (Energy and Environment, Chalmers University of Technology)

ExCo Delegate Elvira Lutter, Klimafonds, Österreich

Participating Countries
Denmark, Germany, Norway, Austria, Portugal, Sweden, (Canada, France, Italy)

Phase 2 started 10/2016-09/2018; Subtasks

Subtask 1: In-depth evaluation and inventory of excess heat levels
Subtask 2: Methodology on how to perform an inventory in practice
Subtask 3: Possible policy instruments and the influence on future use of excess heat
Subtask 4: Technology Development
IEA-IETS Annex 15-2 Industrial Excess Heat Recovery

National partners - Project Team:

- Technische Universität Wien, Institut für Energietechnik und Thermodynamik, Markus Haider, www.iet.tuwien.ac.at

- AEE - Institut für Nachhaltige Technologien, Christoph Brunner, Jürgen Fluch, Wolfgang Glatzl, Anna Grubbauer, Petra Königshofer, www.aee-intec.at

Subcontractor:

IEA-IETS Annex 15-2 Industrial Excess Heat Recovery

Situation:

Climate goals
- Progress in energy-related technologies is of great importance for the achievement of collective goals of energy security, environmental protection and economic and social development.

Visibility and Know-How Transfer
- Participation allows access to valuable know-how as well as increased visibility in an international environment. At the international level, the industrial location of Europe is strengthened through close cooperation and the transfer of knowledge.

Goals and Methods
- Integrate Austrian research institutions into the international network.
- Information exchange.
- Initiation of international projects.
- Development of new cooperations / partnerships in industry / research.
- Offer and expand existing know-how.
Annex Time-Line

- **10/2016** Project start
- **4/2017** International Annex Meeting Lisbon
- **12/2017** Mid-Term report
- **1/2018** International Annex Meeting Vienna
- **?/2018** National Stakeholder Workshop
- **12/2018** National Project ends
- **09/2018** End of Annex 15 Phase 2 (International)

Stakeholder Workshop:

Target groups: industry, technical bureaus, process automation, public decision makers, funding agencies, consulting agencies, etc.

Date: TBA
How to perform an inventory?

How to derive potentials for excess heat usage?

Impact of Policy-Instruments on Excess Heat and its usage?

Technologies for excess heat usage

IEA-IETS Annex 15-2 Industrial Excess Heat Recovery
How to perform an inventory?

Development of a standardized evaluation template for industrial excess heat

- Based on available excess heat potential studies
 - Checklist for energy audits (based on IEE projects EINSTEIN and GREENFOODS, linked to EN16247)
 - Excess heat cadaster Graz and Styria methodology
 - Method developed on statistical data (project IntegrCiTy)
 - Comparison with international studies (mainly Germany and Sweden) with different approaches as basis for potential standardized template

Standardized Template
How to derive potentials for excess heat usage?

SOCO - Storage Optimization Concept

SolarSOCO – Integration of system supply

- System design based on processes and time depending load profiles
- Identification, simulation and design of HEN + storages
- Integration of renewable energies

*SOCO – Storage Optimisation Concepts in Industries, Commerce and District Heating Businesses
Jürgen Fluch*, Christoph Brunner, Bettina Muster-Slawitsch; CHEMICAL ENGINEERING TRANSACTIONS; (2012)
*Based on Tool SOCO – Model and Measures Identified; Juergen Fluch, Christoph Brunner, Bettina Muster-Slawitsch, Christoph Moser, Hermann Schranzhofer, Richard Heimrath; CHEMICAL ENGINEERING TRANSACTIONS; (2013)

Process Integration Framework

- Multi-Period Heat Integration
- Cost-optimal design of heat exchangers
- Cost-optimal design of heat storages and heat-pumps
- Retrofitting, DH integration

National contributions to the Annex

How to derive potentials for excess heat usage?

Example: Dairy Factory (AEE INTEC)
Comparison of AIT PI Framework (Mathematical Programming) & (Solar)SOCO

- 37 Process streams
- Changing operating states
- Stream data for 3 weeks
- Storage integration
- Heat exchanger network synthesis
How to derive potentials for excess heat usage?

ANNEX 15/2 WORKSHOPS ON PINCH-METHODOLOGY
27. SEPTEMBER 2017 & 25. JANUARY 2018 - AIT

Program:
• Advanced pinch methods for analysis of industrial process energy systems.
• Applications for identifying opportunities for
 • internal heat recovery;
 • excess heat usage;
 • heat pumping;
 • thermal energy storage
National contributions to the Annex

Impact of Policy-Instruments on Excess Heat and its usage?

Target: Development of tailor-made policy instruments for the optimised enforcement of excess heat recovery in industry

- Identification of currently applied policy instruments concerning the enforcement of excess heat recovery in industries based on previous projects from AEE INTEC and ENERGIEINSTITUT
- **Internal recovery** and **External usage**
- Analysis is conducted for the EU and IEA IETS Annex 15 member states; Austria in more detail
- Result: listing identified policy instruments by category, including (when applicable) relevant design details

Assessment matrix

- Definition of dimensions/criteria for the assessment of policy instruments enforcing excess heat recovery
- Evaluation of the individual and combined application of policy instruments based on microeconomic theory
- Application of the assessment matrix to identified policy instruments
- Input of achieved results in the survey conducted (AEE INTEC)
National contributions to the Annex

Technologies for excess heat usage

Thermal Energy Storages

Hybrid Energy Storage

30% more stored energy in the hybrid storage compared to Ruth’s steam accumulator

Latent Heat Energy Storages

PCM: HDPE (Tmelt ~ 135°C)

Seasonal Sorption Storage

Summer – desorption
Winter – adsorption
High energy density, only losses while charging/discharging
National contributions to the Annex

Technologies for excess heat usage

Active Fluidization Technology
Fluidization of Fine Particle Powders
Self stabilizing Nozzle-Distributor Floor
Modular Design

Latent Heat Energy Storages

Passive Regenerators
Heating power: P = 15 kWth
Max. temperature: Tmax = 300 °C
Max. volume flow: Vmax = 100 m³/h

M. Koller, H. Walter, M. Hameter: "Transient Numerical Simulation of the Melting and Solidification Behavior of NaNO3 Using a Wire Matrix for Enhancing the Heat Transfer"; ENERGIES, 9 (2016).

THANK YOU

AIT, Center for Energy, Thermal Energy Systems
Giefinggasse 2 | 1210 Vienna | Austria
Rene.Hofmann@ait.ac.at | www.ait.ac.at