

Underground Sun Conversion Natural gas in a sustainable carbon cycle

Highlights of Energy Research 2018

Stephan BAUER, Green Gas Technology

RAG, Schwarzenbergplatz 16, A-1015 Vienna, Austria, www.rag-austria.at

Challenges to meet for the future

- Ambitious goals set on COP21, Paris and within the EU to reduce green house gas emissions call for research and innovation
- Urgent development of renewable energy goes along with the need for large scale, reliable storage solutions
- RAG among the leading storage operators in Europe 66 TWh volume; 30 GW withdrawal-rate
- RAG started several years ago with research activities in Power-to-Gas = Conversion of volatile energy from PV and wind into the energy-carrier gas
- RAG feels confident, that the integration of power- and natural gas system is part of the solution

Electricity Storage ≠ Energy Storage

Underground Sun Storage

- In our first flagship project "Underground Sun Storage" we assessed hydrogen admixture and its behavior in natural gas reservoirs (underground gas storage facilities)
- No curtailment of storage integrity detected
- No H2S detected
- No decrease of permeability, no pore glogging
- Good analogy between lab-tests and field test
- Handling within the existing legal framework
- Discovery of future potential

Conclusion – Field Experiment

- Laboratory tests and "in situ" experiments suggest a natural conversion of Hydrogen and CO2 to Methane (= natural gas) in suitable underground gas reservoirs
- Due to these results the follow up project
 Underground Sun Conversion was initiated:
- renewable natural gas made in the reservoir by an natural microbial process
- = Geological history in fast motion
 - recreation of natural genesis of gas

University of Natural Resources and Life Sciences, Vienna

Changes in gas composition

Formationswater UGS core

University of Natural Resources and Life Sciences, Vienna

Microbiological Consortia (Orders)

Natural gas in a sustainable Carbon cycle

High potential for the future

- Establishing a sustainable carbon cycle
- Seasonal storage of renewable energy
- Future use for existing infrastructure (grids, storages, appliances)
- Renewable gas for heat market and heavy duty mobility
- Import of renewable energy to Europe as gas
 - Decarbonizing despite missing production potentials of renewables

Projektpartner:

Underground Sun Conversion – Contact

Stephan Bauer; Green Gas Technology
 (+43-50724-5377; stephan.bauer@rag-austria.at)

- www.underground-sun-storage.at
- www.underground-sun-conversion.at

Thank you for your kind Attention!