IEA Bioenergy Task 42 – Biorefining for a Future Bioeconomy Austrian Biorefining Stakeholder Workshop, 23rd Act 2017, TU Vienna

Biobased speciality chemicals

BIRGIT KAMM

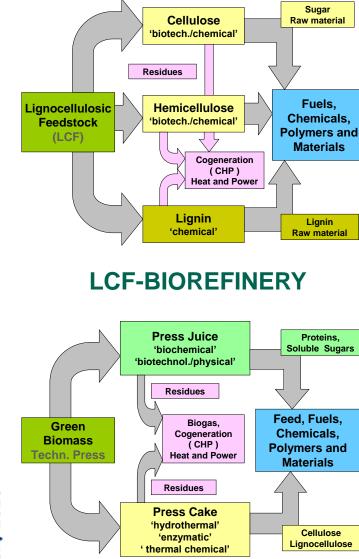
Wood Kplus, Area Wood Chemistry and Biotechnology, Linz, Austria and BTU Cottbus-Senftenberg, Germany

UDDCD KPLUS

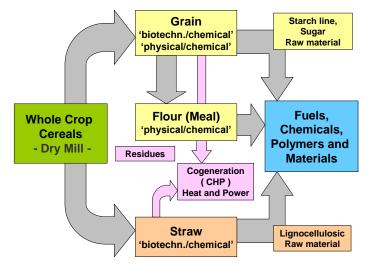
Content

- 1 Specialty chemicals
- **1.1 Biorefinery principles**
- 1.2 Biobased platform chemicals and derived specialty chemicals
- 1.3 Market assessment for biobased specialty chemicals-selection
- 2 Wood KLUS
- 2.1 Biotechnology
- 2.2 The Pulp Mill Biorefinery
- 2.3 Lignin derived products
- **3** Reputation Biorefineries activities
- 4 Student Camp Biorefineries 2018

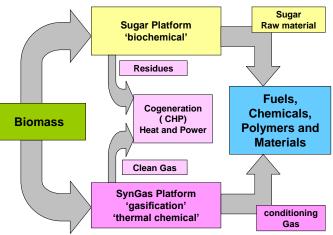
PRODUCING BIOBASED CHEMICALS USING INDUSTRIAL BIOTECHNOLOGY


1 Specialty chemicals

Specialty chemicals are the base for the production of relatively high priced derivatives, like


- (1) Engineering Polymers (specialty plastics)
- (2) Consumer chemicals (washing, cleaning and personal care products, fragrances etc.)
- (3) Paints and coatings
- (4) Plant production agents (insecticides, fungicides, nematicides, acaricides, etc.)
- (5) Fuel additives

Example: German chemical industry, year 2011


- 43 % of the chemicals production
- Market volume 67 bn. Euro •
- 12% of the world volume of 567 bn. Euro •

GREEN BIOREFINERY

WHOLE CROP-BIOREFINERY

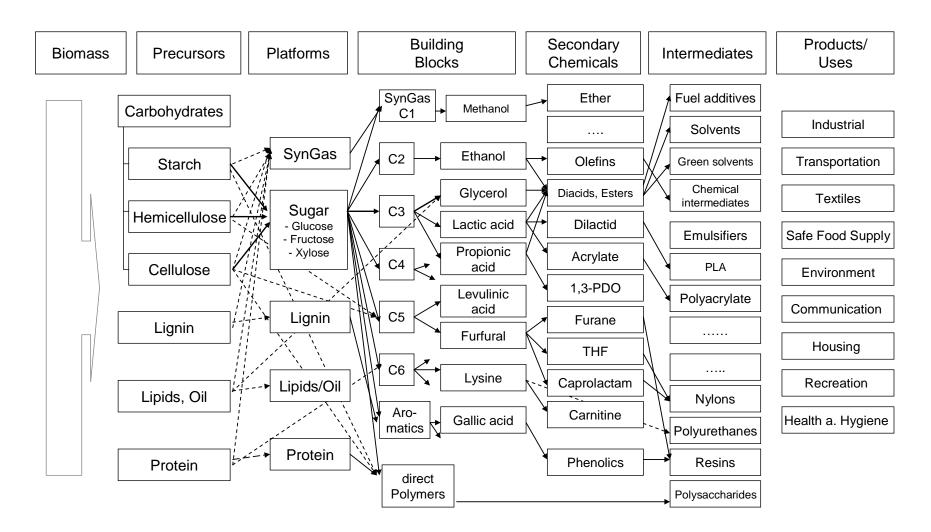
TWO-PLATFORM-CONCEPT 4

EF

S

0

U


J

C

E F

0

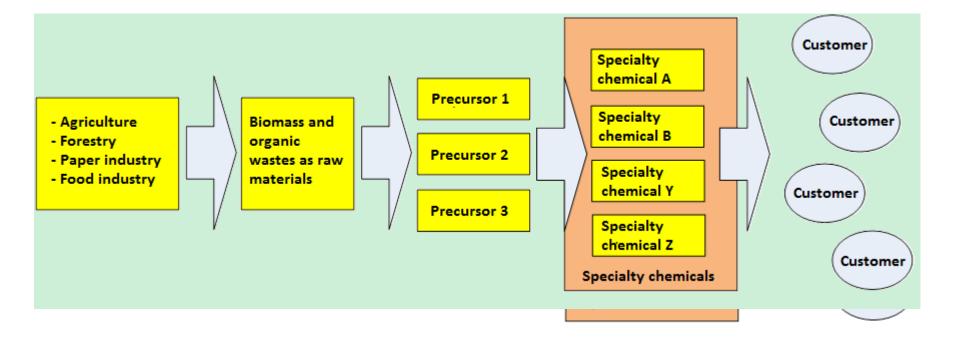
1.2 Biobased platform chemicals and derived specialty chemicals

[Werpy, 2004, Kamm, B. et al; Wiley, 2006, 2010, 2015]

Biobased specialty chemicals 1.3 Market assessment (selection)

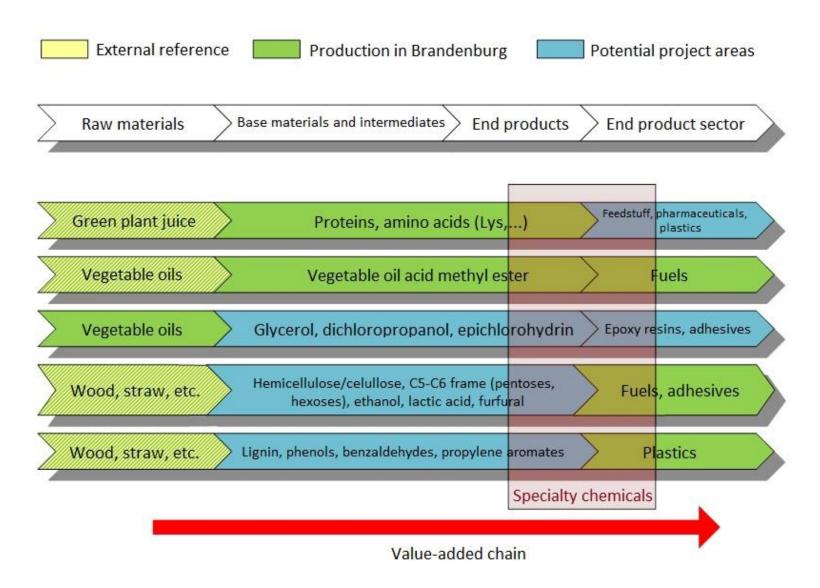
Nr.	DOE´s TOP 15	Source	Derivatives	Use and products	Marketable bio-based products		Note*
					Already available	In the next 10 years	
1	Succinic acid	Fermentation from glucose	1,4-Butanediol, tetrahydrofuran, g-butyrolactone, maleic acid anhydride, pyrrolidone	Solvents, polyester, polyurethane, nylon, paints, food additives	Yes	Yes	A
2	Fumaric acid	Fermentation from glucose	Same as succinic acid	Same as succinic acid	Yes	Yes	А
3	Malic acid	Enzymatic hydroxylation of fumaric acid by fumarate hydratase	Same as succinic acid	Same as succinic acid	Yes	Yes	A
4	2,5-Furan dicarboxylic acid	Oxidation of 5- hydroxymethylfurfural	2,5- Bishydroxymethylfuran, 2,5-Bis(aminomethyl)- Tetrahydrofuran	Substitution der Terephthalsäure im PET	Demonstra- tion is planned	Yes	В

*A – Beginning of commercialization, B - significant activities [CEN. ACS. Org. 10, 2014]

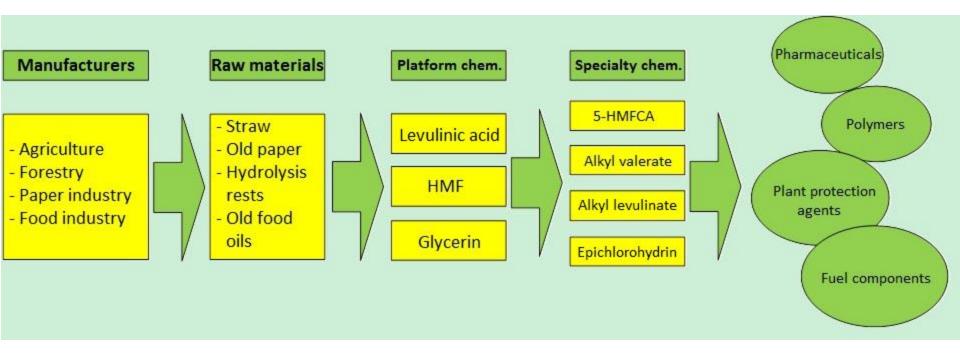

Biobased specialty chemicals – 1.3 Market assessment (selection)

5	3-Hydroxy propionic acid	Fermentation from glucose or glycerin	1,3-propanediol, acrylic acid, acrylamide, methyl acrylate	Polytrimethylene terephthalate, highly resistant carpet fibers, contact lenses	No	Yes	В
6	Glycerin	Chemical or enzymatic transesterification of vegetable oils	Propylene glycol, ethylene glycol, 1,3- propanediol, lactic acid, epichlorohydrin, acrolein	Polyester, soaps and cosmetics, antifreeze agents	Yes	Yes	A
7	Sorbitol	Hydrogenation of glucose	Isosorbide	Flame protection agents, pharmaceuticals, biobased softeners (Polysorb® ID 37), polymers	Yes	Yes	A

* A-[Fa. Solvay, Belgium, Fa. Zeppoil and Fa. Spolchemiegroup Czech Republic), B- significant activities, [CEN. ACS. Org. 10, 2014]


Biobased specialty chemicals

Starting position indifferent regions like Germany, Austria Alignment of the value added chain

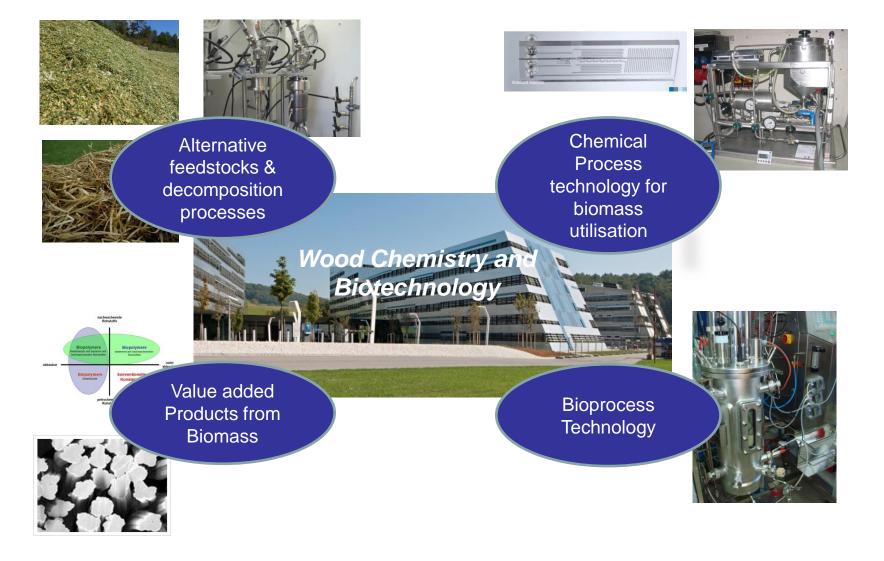

Biobased specialty chemicals

Current processing potential of bio-based raw materials

[Fig. from BASF-lecture in the frame Masterplan, cluster pastics, chemicals HF specialty chemicals]

New biobased specialty chemicals by biorefining

Example: Potential Analysis State of Brandenburg (Germany), 2015



2. From Fundamentals to Implementations

Lab Space: 2.500 m² / Office Space : 1400m² / 115 Employees / > 200 Projects

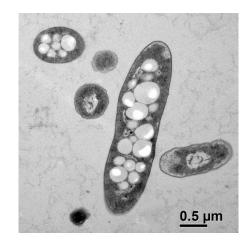
Wood Chemistry & Biotechnology

Process Development - Wood KPlus

- Wood Kplus can contribute along the whole process chain (some examples)
 - Steam Explosion, Refiner, Thermal etc.
 - Inhibitor Screening and Detoxification
 - Biomass decomposition (Hydrolysis)
 - Strain selection, fermentation and optimisation
 - Polymer formulation.....

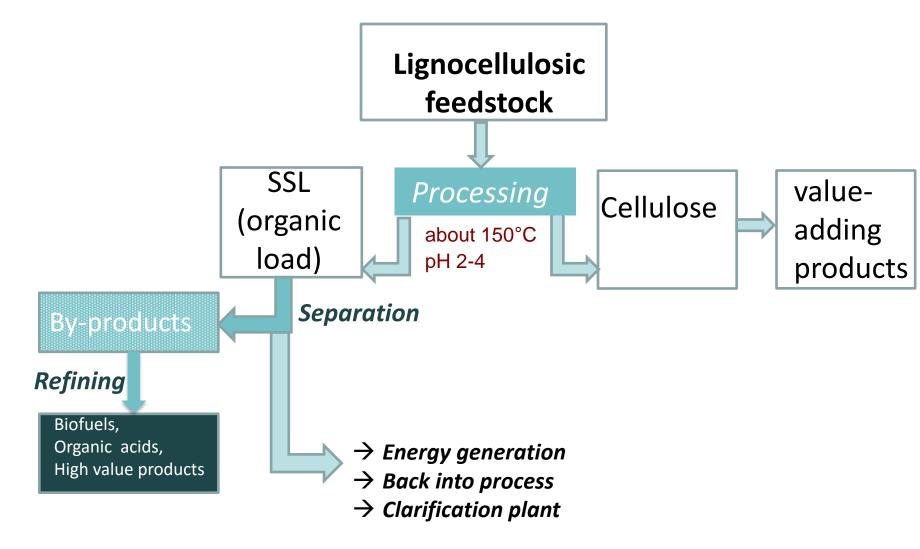
KPIUS

2.1.Extremophiles as New Process Building Block


- Industrially relevant properties
- Combinations possible (e.g alkalihalophile)

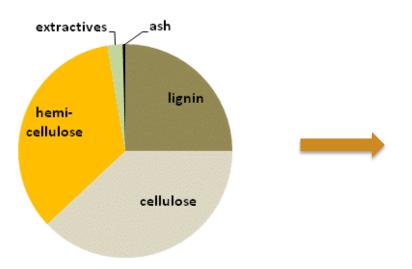
Туре	Range
Thermophile	T = 60-80°C (max. 113 °C)
Psychrophile	T < 15°C (min18°C)
Acidophile	pH< 5 (min. pH=0)
Alkaliphile	pH>9 (max. pH=11)
Halophile	Salt >3,5% (max. 35%)

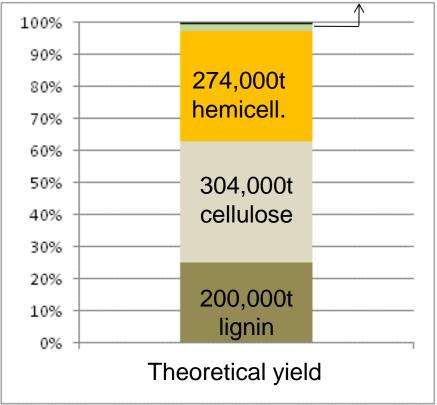
Product fermentation with extremophiles Example – PHA fermentation


• PHA an intracellular biopolymer

- Benefits using Halophiles:
 - Non sterile process
 - Easy cell lysis (osmotic pressure)
 - Conversion of C5 and C6
 - Conversion of polysaccharides possible

KPIUS

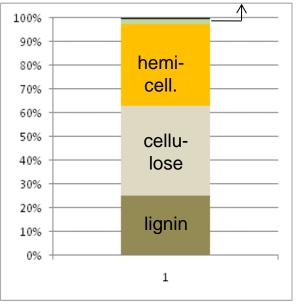

2.2 The Pulp Mill Biorefinery


SSL= spent sulphite liquor

Example: A Medium-Sized Pulp Mill Converting 800,000t Beech Wood

Composition of beech wood H. Sixta (1986) Lenzinger Berichte 61, 5-11)

Biorefinery Potential


→ cellulose sells as pulp, paper, fibres or derivatives

- → lignin sufficient to provide energy for pulping process
- → hemicellulose needs to sell at a higher price than 0.104€/kg

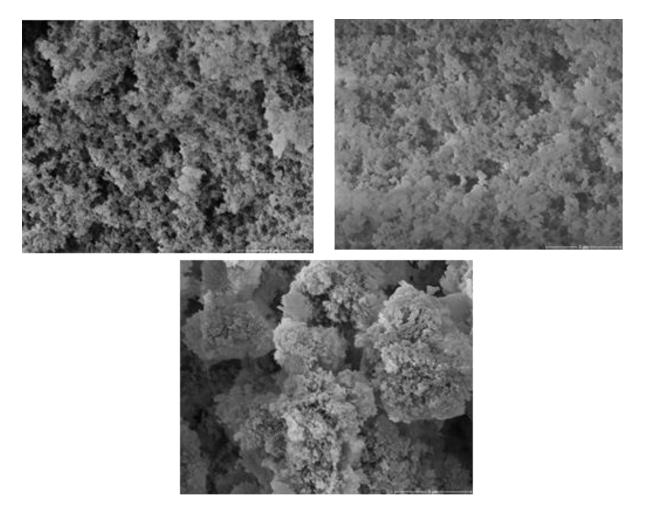
(based on today's oil price - not including CAPEX/OPEX)

Target Product	Selling Price Estimate €/kg	dated from
EtOH	0.50	2015
BuOH	1.89	2015
PHB	6.50	2015

[Prices: From the Sugar Platform to biofuels and biochemicals Final report for the European Commission Directorate-General Energy, N° ENER/C2/423-2012/SI2.673791, April 2015]

Ex. EtOH:

Fermtable hemis <u>in SSL</u>: 120,000 tons yield factor estd. 0.32g/g


→ earnings minus heating value: 6.5 Mio €

Selection of possible value chains to be realized at wood KPLUS

- Development of Wood-PLA compounds (or other biobased popymers) with improved thermo-mechanical properties) and of related high performance products (e.g. 3D-printing)
- Production of high value lignins → product development (e.g. lignin based carbon fibers, respective composites, aerogels, carbogels)
- Development of fully biobased fiber composite materials
- Development of system solutions (e.g. compostable dishes or insecticide releasing carriers for forestry and agriculture)
- Poster: Hydrophobization of Viscose Fibres

2.3 Novel Materials from Byproducts: e.g. Lignin Aerogels

SEM-Pictures of the pore structure of different aerogels. (A) 8%, (B) 13,4% and (C) 20,7% Lignin-Formaldehyd. (Zoom 10.000-times).....(B) BET specific surface: 200 qm/g

Reputation, Biorefinery activities

• Editor of the "biorefinery" book series Biorefineries – Industrial Processes and Products (Wiley-VCH)

Vol. 1 + 2 (published January 2006, 2010)

- Author in Ullmann's Encyclopaedia Industrial Chemistry (Wiley-VCH) Technical Chemistry and Biotechnology (2007,2011, 2015)
- Member of the Advisory Board CLEAN-Soil, Air, Water (Wiley-VCH) CHEMSUSCHEM (WILEY-VCH) Biofuels, Bioproducts and Biorefining (Wiley & Sons, Society of Chemical Industry)

Edited by Birgit Kamm, Patrick R. Gruber, Michael Kamm WILEY-VCH

Biorefineries – Industrial Processes and Products

Status Quo and Future Directions

Reputation, Biorefinery-Activities

B. Kamm (Ed.) Microorganisms in Biorefineries, In: Microbiology Monographs, Series Editor A. Steinbüchel, 2015

http://www.springer.com/life+sciences/ microbiology/book/978-3-662-45208-0

Topics covered include: new metabolic pathways of microbes living on green plants and in silage; using lignocellulosic hydrolysates for the production of polyhydroxyalkanoates; fungi such as Penicillium as host for the production of heterologous proteins and enzymes; bioconversion of sugar hydrolysates into lipids; production of succinic acid, lactones, lactic acid and organic lactates using different bacteria species; cellulose hydrolyzing bacteria in the production of biogas from plant biomass; and isoprenoid compounds in engineered microbes.

Invitation

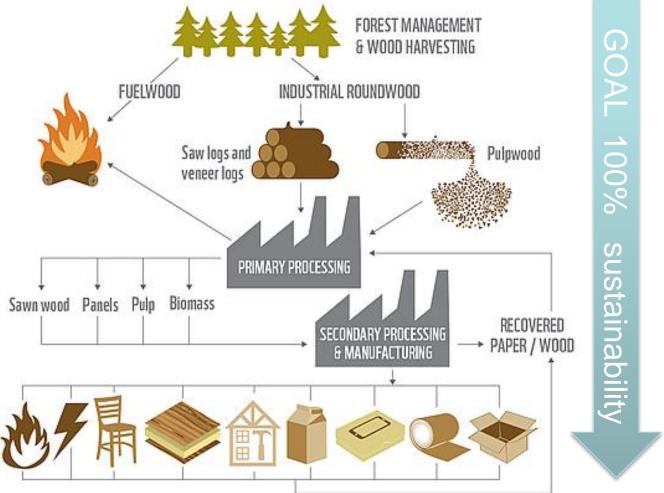
Student Camp Biorefineries and Biobased Industrial Products 11. - 13. September 2018

Venue: Linz and Lenzing

THANK YOU FOR INVITATION.

Contact

Prof. Birgit Kamm, Dr. rer. nat. habil.


Honorary Professor BTU Cottbus – Senftenberg Kompetenzzentrum Holz GmbH Key Researcher E-mail b.kamm@kplus-wood.at

Dr. Viktoria Leitner Team Leader Biotechnology Area Wood Chemistry and Biotechnology E-Mail v.leitner@plus-wood.at

A-4040 Linz Altenberger Straße 69 www.wood-kplus.at

The wood industry our contribution

Source: http://wwf.panda.org/?207367/Industry-key-to-conserving-forests-as-demand-for-wood-projected-to-triple-by-2050