

Resource-efficient fuel additives for reducing ash related operational problems in waste wood combustion "REFAWOOD"

Peter Sommersacher

Excellent Technologies

Content

- Introduction
- Objectives
- Methodology
 - Fuels and additives
 - Thermodynamic equilibrium calculations (TEC)
 - Fixed-bed lab-scale reactor

Results

- Determined mixing ratios
- High temperature corrosion risk
- Pictures of the ash residues
- Estimated aerosol emissions
- Estimated SO₂- and HCl emissions
- Summary and conclusions
- Ongoing work & outlook

Introduction

- Waste wood and other biomass waste products have become very interesting as fuels for CHP-plants.
 - + Lower cost compared to virgin wood fuels.
 - Relative high concentrations of inorganic materials lead to increased risk of ash-related problems during combustion.
 - - Many waste wood fired power plants in Europe reports about corrosion problems, fouling and slagging in the superheater and on furnace walls → unacceptably short life times and short cleaning intervals.
- Additives can reduce the alkali chloride-related problems in biomass combustion. Several different mineral- and sulphur containing additives have been proposed (e.g. Wang, 2012).
- Investigations of new cheap and resource efficient fuel additives for reducing corrosion, fouling and slagging are of major interest.

Objectives

- New additives with
 - multi-functions
 - high stability and reactivity and
 - low cost (preferable from waste materials with high availability) should be identified and tested.
 - -Recycled gypsum or coal fly ash are feasible candidates.
- Improve the economic and environmental conditions and enlarge the market for the use of waste wood fuels in CHP plants by using resource efficient additives.
- Estimation of suitable ranges of additive to fuel ratios, through model calculations.
 - Testing of proposed additive ratios in a fixed-bed lab-scale reactor.
- Preparation of design concepts for fuel additives including information concerning suitable additive/fuel mixtures which reduce different ash related operational problems during combustion of waste wood.

Methodology - Fuels and additives

- Fuel assortments provided by Fritz Egger GmbH & Co. OG (chipboard production).
 - Forest wood chips
 - Bark
 - Recycling material not usable for the manufacturing process
 - Four different dust fractions from the manufacturing process
- Homogenisation and extraction of representative fuel sample
- Wet chemical fuel analysis of all different fractions
- **■** Fuels investigated (mixtures of fuel fractions provided to the furnace)
 - 1. fuel: mixture of forest wood chips and recycling material
 - 2. fuel: mixture of forest wood chips, recycling material and different dust fractions
 - 3. fuel: mixture of recycling material and different dust fractions

Methodology - Fuels and additives

- Additives to decrease the high temperature corrosion risk
 - Waste gypsum board, iron sulphide (FeS)
- Additive to decrease the K release, to improve the ash melting behaviour and to partly reduce the high temperature corrosion risk
 - Coal fly ash (mainly composed of aluminium silicates)
- Pre-evaluation of appropriate additive ratios under application of fuel indices and high temperature equilibrium calculations (TEC)
- Preparation of fuel additive mixtures and pelletisation
 - Pelletisation of selected fuel mixes without and with additive is required for
 - homogenisation of the fuel and additive mixtures
 - performance of fixed-bed lab-scale reactor experiments

Methodology - Thermodynamic equilibrium calculations (TEC)

TEC provide information regarding

- Ash composition and fractionation of individual elements in solid, liquid and gaseous phases
- Composition of phases formed
- Release of relevant aerosol forming elements (S, Cl, K, Na, Zn, Pb)
- Ash melting behaviour

Software

■ FactSage 7.0 – Modul: EQUILIB

Calculation model applied

- More than 1,000 components
- 9 mixed phase (selection of stable, thermodynamic relevant phases)
- Temperature range evaluated: 500° 1,600°C
- 2-step model considers the devolatilisation and charcoal combustion phase

Methodology - Fixed-bed lab-scale reactor

- Batch type reactor to simulate the fuel decomposition behaviour in real-scale grate combustion systems
- Tests with the lab-scale reactor provide results on:
 - Combustion behaviour
 - Release of NO_x precursors
 - Release of volatile and semi-volatile elements from the fuel to the gas phase
 - First indications about the ash melting tendency (optical evaluation)

Methodology - Fixed-bed lab-scale reactor

Energy input:

- Via radiation from the upper heating element (radiation section)
- Into the bed zone via the lower heating element (bed section)
- The upper and the lower heating element can be controlled separately.
- Primary combustion air is supplied from below the grate
- Under consideration that the fuel transport along the grate can be compared with a plug flow, the time dependent results of the lab-scale reactor can be correlated to the local burning conditions on a grate.

Results - Determined mixing ratios

- 2 additive ratios for each fuel mix were investigated in the lab-scale reactor
 - Low → first effect of the additive can be observed
 - High → distinct effect of the additive and identification of the effect of overdosing

	Low (wt.%)	High (wt.%)	Expected improvements by the additive
1. fuel with gypsum	2.00	4.5	High temperature corrosion, ash melting behaviour
2. fuel with coal fly ash	1.00	3.0	Decreased K release, ash melting behaviour and partly improved high temperature corrosion risk,
3. fuel with FeS	0.25	0.5	High temperature corrosion

Results – High temperature corrosion risk based on molar 2S/CI ratio

- Sulfation of alkali metals or heavy metal chlorides in tube near deposition layers is relevant regarding corrosion in biomass-fired boilers → Cl is released which attacks the tube surface (so-called active oxidation)
- Fuels with a high 2S/Cl-ratio → formation of a protective sulphate layer
- For fuels with a high 2S/CI-ratio higher 4 → minor corrosion risk

Molar 2S/CI ratios for the pure fuels and the additive mixtures

		1. fuel			2. fuel			3. fuel		
		amount of gysum			amount of coal fly ash			amount of FeS		
	wt%	0.0	2.0	4.5	0.0	1.0	3.0	0.0	0.25	0.5
2S/CI	mol/mol	2.1	7.7	18.8	2.9	1.9	3.7	2.5	4.0	4.9

- Increased high temperature corrosion risk for all pure fuels and the 2. fuel with 1% coal fly ash.
- Significant reduction of the high temperature corrosion risk for 1. fuel with 2% gypsum.
- Considerable reductions of the high temperature corrosion risk for 2. fuel with 3% coal fly ash and 3. fuel with 0.25% and 0.5% FeS.

 Slide 11

Results - Pictures of the ash residues after fixed-bed labscale reactor combustion test runs

Decreasing slagging tendency with rising additive ratios for the 1. and 2. fuel

Results - Estimated aerosol emissions based on fixedbed lab-scale reactor combustion test runs

- ZnO has a strong contribution concerning the aerosol emissions

 → typical for waste wood
- Increased aerosol emissions by addition of gypsum
- Aerosol emission decreases with coal fly ash addition → decreased K and Na release from the fuel to the gas phase
- **■** FeS doesn't influence the aerosol emissions.

Results - Estimated SO₂- and HCl emissions based on fixed-bed lab-scale reactor combustion test runs

- The increased SO₂ emissions by addition of gypsum and FeS can decrease the high temperature corrosion risk, but the emission limits for SO₂ needs to be considered.
- No influence on the gaseous SO₂ and HCl emissions have to be expected by addition of coal fly ash.

Summary and conclusions

- 2% gypsum, 0.25% FeS and 3% coal fly ash minimises the high temperature corrosion risk (based on molar 2S/CI ratio).
- An improved ash melting behaviour can be expected with addition of gypsum and coal fly ash (optical evaluations and TEC).
- The addition of 2% gypsum only cause to slightly increased aerosol emissions and also the increase of the SO₂ emissions is on a moderate level;
 2% → best additive ratio tested
- The addition of coal fly ash led to a reduction of the aerosol emissions, whereas the SO_2 and HCl remain constant; $3\% \rightarrow$ best additive ratio tested
- The addition of FeS doesn't influence the aerosol emissions, whereas the SO₂ emissions increase.
 - FeS will not be tested in real scale trials → only improvement concerning high temperature corrosion is expected
- By TEC and fixed-bed lab-scale reactor experiment appropriate additive ratios for the fuels investigated can be identified.

Slide 15

Ongoing work & outlook

- Real scale combustion test runs with optimum additive ratios of gypsum and coal fly ash
- Compilation of legal framework conditions for utilisation of waste wood, new additives and ash
- Case studies for reductions in operating and maintenance costs
 - Full scale test run data will be used to calculate the possible cost reduction due to:
 - Extended maintenance intervals
 - Increased plant efficiency
 - Reduced heat exchanger replacement costs
- Case studies for fly ash and bottom ash utilisation
 - Evaluation if the use of additives gives rise to alternative ash utilisation options based on test run data

Thank you for your attention!

Peter Sommersacher

Inffeldgasse 21b, A-8010 Graz

Tel.: +43 (316) 873 - 9237

Fax: +43 (316) 873 - 9202

peter.sommersacher@bioenergy2020.eu http://www.bioenergy2020.eu

