TCP Wind Energy

Schwerpunkte und Neuigkeiten

Andreas Krenn

Energiewerkstatt Verein


Entwicklung der Windenergie

Installierte Leistung: 2.409 MW (1.119 Windturbinen)

Stromproduktion: 5,2 TWh/Jahr (8,7% vom Gesamtstrombedarf)

Stand des Ausbaus in Österreich mit 31. Dezember 2015

Prognose zur Entwicklung der Gestehungskosten:

Source: Nature Energy, September 2016 / Task 26 , Forecasting Wind Energy Costs

T19 - Wind Energy in Cold Climates

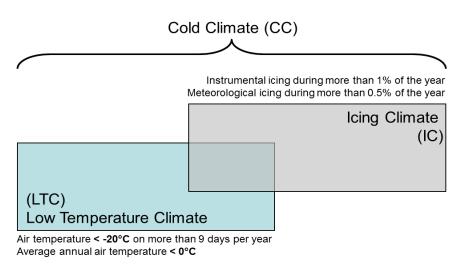


Abb: Vereistes Rotorblatt

Weltweit installierte Leistung	Installierte Leistung 2015 [MW]	Prognostizierte Leistung 2020 [MW]
Cold Climate	127.000	185.000
Offshore	8.000	20.000

Cold climate wind power market study update for 2015-2020 (published in WindPower Monthly magazine 2016)

T32 – Wind LIDARs

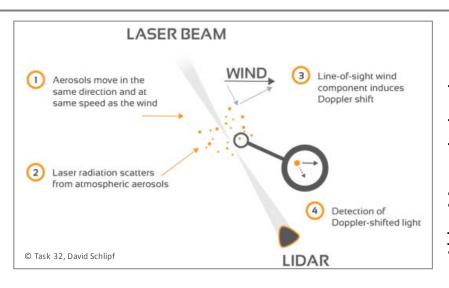


Abb.: Messprinzip eines Wind LIDARS

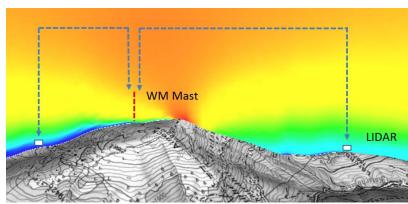


Abb.: Standortanalyse im komplexen Gelände

Abb.: Basisannahme - Gleichmäßiger Fluss im betrachteten Höhensegment und Messintervall

T32 - Wind LIDARs

Abb.: Gondelbasiertes LIDAR

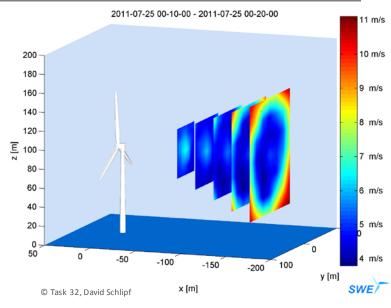
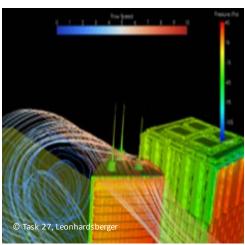


Abb.: Analyse der Nachlaufströmung


Weitere Anwendungsmöglichkeiten:

- Lasten- und Leistungsregelung
- Wake Analyse (Nachlaufströmung)
- Leistungskurvenvermessung / Betriebsdatenanalyse

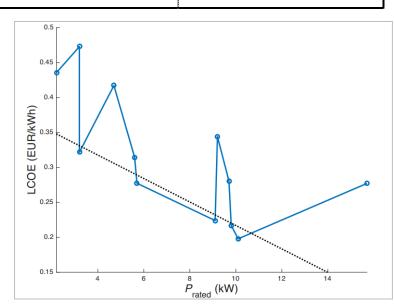
IEA Vernetzungstreffen, Wien

T27 – Small Wind Turbines

- Standortspezifische Themen
 - Analyse der Windverhältnissen (Messung, Simulation), Auswahl geeigneter Standorte
 - Hohe Turbulenzintensitäten (Standsicherheit, Wirtschaftlichkeit)
 - Umweltauswirkungen (Schall, Schwingungen, Eisfall,...)
- Anlagenspezifische Herausforderungen
 - Praxiserfahrungen und Langzeitbewertung
 - Standards und Zertifizierung
- Komplexes Genehmigungsverfahren
- Markt und Wirtschaftlichkeit

Abb.: Mean LCOE per Turbine, Vermeir 2015

Wirtschaftlichkeit von Kleinwindkraftanlagen


Spezifischer Ertrag [kWh / m² x Jahr]

Anlage vs. Standort	Weinviertel;	Forschungspark	ENERGYbase 1210 Wien;
	140m NH;	Lichtenegg; NH 19m	NH 9m ü.D.
Windgeschwindigkeit in NH	7-8 m/s	4,7 m/s	3,3 m/s
V126 (3.300 kW)	800 - 1.000		
Schachner (5 kW)		270	73
WindSpot (1,5 kW)		205	91

Studie der Universität Brüssel

Vermeir 2015 (PhD thesis Vrije Universiteit Brussel)

- Anlagengröße bis 20 kW
- Windgeschwindigkeiten zw. 3,5 und 6,4 m/s
- Keine Diskontierung (WACC = 0)
- Kostenangaben von den Herstellern

TCP Wind Energy

Ich bedanke mich für die Aufmerksamkeit!