

Highlights der Brennstoffzellenentwicklung AFC Annex 31 und Annex 35

Viktor Hacker
Fuel Cell Group, Institut für Chemische Verfahrenstechnik und Umwelttechnik, NAWI Graz, Technische Universität Graz Inffeldgasse 25/C, 8010 Graz

IEA Vernetzungstreffen - Aktuelle Entwicklungen, Modul Wien, 29. Oktober 2015

Content

- Introduction to IA AFC
- Members and Meetings Annex 31
- Members and Meetings Annex 35
- Contribution TU Graz to Annex Meetings
- Dissemination

The Advanced Fuel Cells Implementing Agreement

Toyota Mirai \$57,500 (MSRP in CA)

Hyundai ix35 Fuel Cell \$499/month (Free Fuel and Maintenance in CA)

800 000 JPY = approx. 6 000 EUR

The Advanced Fuel Cells Implementing Agreement has eight active Annexes

Technologies

Polymer Electrolyte Fuel Cells

To reduce the cost and improve the performance of PEFCs, DMFCs and corresponding fuel cell systems.

Solid Oxide Fuel Cells

To assist, through international co-operation, the development of SOFC technologies.

Electrolysis

To share information and learning on electrolyser technologies and their applications.

Applications

Fuel Cells for Stationary Applications

To understand better how stationary fuel cell systems may be deployed in energy systems.

Fuel Cells for Transportation

To understand better how fuel cells may be deployed in transportation applications.

Fuel Cells for Portable Applications

To assist, through international co-operation, the development and commercialisation of portable fuel cells.

Systems Analysis

To assist the development of fuel cells through analysis work to enable a better interpretation of the current status, and the future potential, of the technology. This work will provide a competent and factual information base for technical and economic studies.

Modelling of Fuel Cell Systems

To further develop the open source modelling approaches and knowledge base to facilitate the development of fuel cell technology.

http://www.ieafuelcell.com/links.php

Advanced Fuel Cells Implementing Agreement Map

Annex 30: Electrolysis

Annex 31: Polymer Electrolyte Fuel Cells

Annex 32: Solid Oxide Fuel Cells

Annex 33: Fuel Cells for Stationary Applications

Annex 34: Fuel Cells for Transportation

Annex 35: Fuel Cells for Portable Applications

Annex 36: Systems Analysis

Annex 37: Modelling of Fuel Cells Systems

http://www.ieafuelcell.com/links.php

Annex 31: Polymer Electrolyte Fuel Cells

NAME	COUNTRY	COMPANY				
Viktor Hacker	Austria	Graz University of Technology				
Shanna Knights	Canada	Ballard				
Steven Holdcroft	Canada	Simon Fraser University and NRC Canada				
Steen Yde-Anderson	Denmark	IRD Fuel Cell A/S				
Hans Aage Hjuler	Denmark	Danish Power Systems				
Jari Ihonen	Finland	VTT				
Henri Karimäki	Finland	VTT				
Thierry Priem	France	Commissariat à l'Energie Atomique (CEA)				
Werner Lehnert	Germany	Forschungszentrum Jülich				
Carsten Cremers	Germany	ICT Fraunhofer				
Alex Schechter	Israel	Ariel University				
Alessandra Carbone	Italy	CNR-ITAE				
Akimasa Daimaru	Japan	Daido University				
Gu-Gon Park	South Korea	Korea Institute of Energy Research				
EunAe Cho	South Korea	Korea Advanced Institute of Science and Technology (KAIST)				
Ulises Cano	Mexico	Instituto de Investigaciones Eléctricas (IIE)				
Göran Lindbergh	Sweden	KTH – Royal Institute of Technology				
Rakel Wreland Lindström	Sweden	KTH – Royal Institute of Technology				
Lars Petterson	Sweden	KTH – Royal Institute of Technology				
Di-Jia Liu	USA	Argonne National Laboratory				

- R&D oriented
- Identification and development of techniques and materials
- Cost reduction
- Improve the performance and durability
 - Polymer electrolyte fuel cells (PEFC)
 - Direct fuel polymer electrolyte fuel cells (DF-PEFC)
 - Corresponding fuel cell systems
- Major applications are
 - Automotive
 - Portable power
 - Auxiliary power units (APU)
 - Stationary power (residential, commercial)
 - Combined heat-and-power (CHP) sectors

Contribution Fuel Cell Group TU Graz

PEFC

- Investigation of degradation phenomena
- Identification of critical operation parameters
- Optimisation operation parameter
- Characterisation methods

HT-PEFC

- Catalyst research
- Lifetime improvement
- Cost reduction

DMFC/DEFC

- Catalyst research
- Membrane
- Catalyst research & MEA development

Annex 31: Polymer Electrolyte Fuel Cells

Meeting Seoul, Korea

- 13.-14. June 2014
- Contribution TU Graz
 - Advanced Fuel Cell Diagnostics
- Participants from:
 - Austria
 - France
 - Germany
 - Italy
 - Japan
 - Mexico
 - Sweden
 - Switzerland
 - USA
 - Korea
 - Canada and China (guests)

Meeting Pfinztal, Germany

- 6.-7. July 2015
- Contribution TU Graz
 - Development of Fuel Cell Equivalent Circuits taking into Account Non-linear Effects

Participants from:

- Austria
- Denmark
- Germany
- Italy
- Japan
- South Korea
- Mexico
- Sweden
- USA

Annex 35: Fuel Cells for Portable Applications

NAME	COUNTRY	COMPANY Technische Universität Graz				
Victor Hacker	Austria					
Christina Bock	Canada	Department of National Defence				
Ed Andrukaitis	Canada	NRC				
Per Balslev	Denmark	Dantherm Power A/S				
Carsten Cremers	Germany	Fraunhofer Institut Chemische Technologien				
Alexander Dyck	Germany	NEXT ENERGY				
Martin Müeller	Germany	Forschungszentrum Jülich GmbH				
Fabio Matera	Italy	CNR-ITAE				
Akiteru Maruta	Japan	AIST				
Sang-Kyung Korea Kim		KIER				
Maria Wesselmark	Sweden	Intertek				

Focus & Application

- Handheld FC systems
- Portable FC systems
- Light traction FC systems (e.g. forklift)

Objectives

- Information exchange
- Starts from catalyst research to MEA development to FC stacks to complete systems
- FC types
 - Low-temperature PEMFC
 - DMFC/DEFC
 - DBFC (only TU Graz)
- Hydrogen storage systems for portable FC applications

Contribution Fuel Cell Group TU Graz

Hydrogen storage system based on lonic Liquids

- Research on storage system and hydrogen release from chemical carrier
- System with PEMFC
- DBFC R&D

DMFC/DEFC

- Catalyst research
- Membrane
- Catalyst research & MEA development

Annex 35: Fuel Cells for Portable Applications

Meeting Messina 2014

- Participants from:
 - AT, DE, IT
- Topics
 - Standardization of FC testing procedures
 - To make results from different labs comparable
 - DMFC research
 - Degradation studies
 - Applications with long stand-still time
 - Portable hydrogen storage
 - Pressurized
 - Metal hydride
 - Ionic liquid storage system

Meeting Oldenburg 2015

- Participants from:
 - AT, DE, IT, KR
- Topics
 - DMFC catalyst development
 - Cheaper and stable catalysts
 - DMFC MEA design and development
 - Overcome degradation
 - Nafion content in membrane and air humidification

DMFC as a backup power system for telecom applications (Martin Müller, FZ Jülich)

MEA Design and operation strategies can help to reach market and customer demands (A. Glüsen, FZ Jülich)

11

Contribution TU Graz

SecondAct (Annex 31)

Simulation, Statistics and Experiments Coupled to develop Optimized aNd Durable µCHP systems using Accelerated Tests

In-situ characterisation

- Polarisation measurements (IV)
- Electrochemical impedance spectroscopy (EIS)
- Cyclic voltammetry (CV)
- Hydrogen diffusion measurements

Segmented cell: local defects can be detected via spatial resolution of the current density during characterisation

	1	2	3	4	5	6	7	8	9	10	
	20	19	18	17	16	15	14	13	12	11	←
\rightarrow	21	22	23	24	25	26	27	28	29	30	\longrightarrow

Ex-situ characterisation

 Detection of membrane thinning and pinholes by infrared thermography (destructive method, only EOL)

Advanced 3D fuel cell analysis and condition diagnostics (Annex 31)

Goals

- 3 dimensional fuel cell stack diagnostics
- Real time data analysis
- Optimised efficiency due to higher fuel utilisation
- Higher lifetime by avoiding critical states
- → The theory of harmonic distortions has been put into Equivalent Circuits predicting the received spectra
- Optimised frequencies and amplitudes to improve differentiation of critical states
- → A new hardware has been developed and is capable to measure harmonic distortions (at 4 frequencies at multiple cells)
- Current and Temperature distributions have been presented
- → More efficient control concepts still avoiding critical states are possible
- → Multipole Equivalent Circuits enabling 3dimensional analysis with the same number of shunt sensor plates

Hydrogen Storage in Ionic Liquids (Annex 35)

- Storage medium conditions
 - Aqueous solutions
- Hydrogen release
 - IL-BH₄ + $4H_2O \rightarrow IL-B(OH)_4 + 4H_2$
 - Catalytic
 - Heterogeneous metal catalysts
- Characterization
 - SEM, EDX
 - Benchmark tests of H₂ release
- Properties
 - Pressureless at ambient temperatures
 - No hydrogen release without catalyst
 - Simple handling

Dissemination

Dissemination - Publication

Vorträge

- Friedrich, T.; Grimmer, C.; Hacker, V.:
 CEET research Activities on Portable FC Applications. in: IEA AFC
 Implementing Agreement Annex 35 Meeting. Oldenburg am:
 16.09.2015
- Friedrich, T.; Grimmer, C.; Hacker, V.:
 CEET Research Activities on Portable Applications Borohydride H2
 Storage System. in: IEA AFC Annex 27 Meeting. Messina am:
 11.09.2014
- Hacker, V.; Weinberger, S.; Bodner, M.: Advanced Fuel Cell Diagnostics. - in: IEA AFC, Annex 22 Meeting. Seoul am: 13.06.2014
- Hacker, V.:
 Development of Fuel Cell Equivalent Circuits taking into account Nonlinear Effects. - in: IEA AFC Annex 31 meeting. Pfinztal am: 06.07.2015

Journals

- Grimmer, C.; Grandi, M.; Zacharias, R.; Cermenek, B.; Weber, H.; Morais, C.; Napporn, T. W.; Weinberger, S.; Schenk, A.; Hacker, V.: The electrooxidation of borohydride: a mechanistic study on palladium (Pd/C) applying RRDE, 11B-NMR and FTIR. - in: Applied catalysis / B 180 (2016), S. 614 - 621
- Grimmer, C.; Nestl, S.; Senn, J.; Hacker, V.:
 Selective real-time quantification of hydrogen within mixtures of gases via an electrochemical method. in: International journal of hydrogen energy 40 (2015) 4 , S. 2055 2061
- Schenk, A.; Grimmer, C.; Perchthaler, M.; Weinberger, S.; Pichler, B. E.; Heinzl, C.; Scheu, C.; Mautner, F.-A.; Bitschnau, B.; Hacker, V.: Platinum-Cobalt Catalysts for the Oxygen Reduction Reaction in High Temperature Proton Exchange Membrane Fuel Cells Long Term Behavior Under Ex-situ and In-situ Conditions. in: Journal of power sources 266 (2014), S. 313 322

Abstracts / Poster

- Cermenek, B.; Zacharias, R.; Grandi, M.; Grimmer, C.; Schenk, A.; Hacker, V.: Palladium based electrocatalysts for ethanol oxidation reaction in alkaline medium. - in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 02.09.2015
- Kaltenböck, I.; Schenk, A.; Grimmer, C.; Pichler, B. E.; Hacker, V.: Active and stable oxygen reduction catalysts for the high temperature Polymer electrolyte fuel cell. - in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 30.08.2015
- Grandi, M.; Grimmer, C.; Zacharias, R.; Senn, J.; Hacker, V.: Synthesis and Characterisation of carbon supported bimetallic platinum-gold-nanoparticles for borohydride direct oxidation. - in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 30.08.2015
- Senn, J.; Grimmer, C.; Nestl, S.; Hacker, V.: Real-time quantification method for Hydrogen . - in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 30.08.2015
- Zacharias, R.; Grimmer, C.; Grandi, M.; Senn, J.; Hacker, V.: Hydrolysis in direct borohydride fuel cells -. - in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 30.08.2015
- Grimmer, C.; Zacharias, R.; Grandi, M.; Hacker, V.:
 The benefits of a mixed electrolyte approach for direct borohydride fuel cells-. in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 30.08.2015
- Malli, K.; Nestl, S.; Voitic, G.; Hacker, V.: The influence of two different synthesis routes on the performance of alumina supported iron oxygen carrier for the steam iron process. - in: 8th International Summer School on Advanced Studies of Polymer Electrolyte Fuel Cells. Yokohama am: 30.08.2015

Dissemination – Summer Academy

Eine "International Summer School" zum Thema Brennstoffzellen wird in Kooperation mit der Yokohama National University jährlich geplant und alternierend in Yokohama, Japan und Graz, Österreich durchgeführt.

- 8th FC Summer School 2015
 Yokohama National University, Japan
 August 31st September 5th, 2015
- 9th FC Summer School 2016
 Graz University of Technology
 August 29th September 3rd, 2015

www.tugraz.at/fcsummerschool

Dissemination – Internet

- TU Graz CEET www.tugraz.at/institute/ceet/forschung/brennstoffzellenentwicklung/
- IEA AFC www.ieafuelcell.com/
- BMVIT: Nachhaltig Wirtschaften
 www.nachhaltigwirtschaften.at/iea/results.html/id3378
- A3PS http://www.a3ps.at/site/de/links-0

TU Graz CEET

www.tugraz.at/institute/ceet/forschung/brennstoffzellenentwicklung

IEA AFC www.ieafuelcell.com

BMVIT: Nachhaltig Wirtschaften

www.nachhaltigwirtschaften.at/iea/results.html/id3378

A3PS http://www.a3ps.at/site/de/links-0

Dissemination – Workshop TU Graz

2nd International Workshop on Hydrogen and Fuel Cells

Die Veranstaltung wird in Kooperation mit der Yokohama National University und in enger Abstimmung mit BMVIT und FFG geplant und durchgeführt.

TU Graz, 31. August 2016

Vielen Dank!

IEA Vernetzungstreffen - Aktuelle Entwicklungen, Modul Wien, 29. Oktober 2015