

Deployment scenarios for torrefaction based solid bioenergy carriers

A European R&D Project funded within the Seventh Framework Programme by the European Commission

Fachgespräch Bioenergieforschung 21. November 2014, Wien

Fabian Schipfer, Lukas Kranzl

© 1,5,6: ECN; 2-4 Jasper Lensselink

Outline

- Introduction
 - renewable energy deployment and biomass
- Objectives
 - of the SECTOR project
 - of this study
- Methodology
 - the biomass-to-end-use chain simulation tool (BioChainS)
- Results
 - Scenarios
- Conclusions

Introduction

EU27 final energy consumption in 2011

Source: AEBIOM, European Bioenergy Outlook 2013, own illustration

Biomass for energy

- from forestry
- Energycrops
- Waste
- Aquatic biomass

Preparation of biomass

- Mechanical
- Thermal
- Bio-, thermo- & chemical

Bioenergy carrier

- Solid
- Liquid
- Gaseous

Objectives

Of the EU 7th Framework Programme SECTOR-project

"to advance the state of the art of torrefaction as one of the major technologies to achieve the EU renewable energy targets"

Of this presentation

Assessment of the role of torrefaction-based solid bioenergy carriers in the biomass-to-end-use chains and their contribution to the development of the bioenergy market in Europe

Assessment of (dis-) advantages of torrefied pellets compared to traditional (white) pellets

Methodology

gathering and processing experimental data and estimations computation of permutations in BioChainS tool

Methodology - biomass-to-end-use chain simulation

Canada to EU for residential use
According to pellet production plant size, technology and distribution distance

Statistical pellet consumption and own scenarios based on literature scenarios

"Low scenario"

.) Using domestic sawn dust potential

"Moderate scenario"

- .) Pellet import
- .) additional feedstock for small scale (stem wood)
- .) additional feedstock for large scale (used wood)

"High scenario"

- .) Pellet imports.) additional
- feedstock for small scale (stem wood)
 .) additional
- feedstock for large scale (used wood, straw and sunflower husks)
- .) larger pellet plants

Conclusions - selection

- Similar costs for torrefied and white pellets can be achieved
 -> bioenergy product portfolio can be enhanced
- Thermally upgrading of herbaceous biomass does not lead to considerable advantages
- Higher energy densities lead to advantages for long distance trade increasing demand -> increasing pellet trade -> increasing torrefaction share
- Similarity with coal (grindability, hydrophobicity, higher heating values than traditional) makes it an interesting option for industries

thank you very much for your attention

SFCTOR team contact

Energy Economics Group University of Technology 1040 Wien

www.eeg.tuwien.ac.at

Fabian Schipfer Lukas Kranzl

t: +43 (0) 1 58801 370363

e: schipfer@eeg.tuwien.ac.at

w: www.sector-project.eu

pictures in this presentation: ECN, CENER, DBFZ, OFI, Topell, DTI, Stefan Dusan, University of Stuttgart, Claudia-Hautumm (pixelio), Gabi Schoenemann (pixelio), Thomas Siepmann (pixelio), nordagrar.com, Jasper Lensselink, Museum Brunsbuettel, enjoyconstellation.com, Thermya,

