

Markus Ortner

Thermo-chemical pretreatment of brewery residuals to improve biogas process

Feedstock for Biogas-production

Conventional feedstock

- Maize silage, energy crops
- Costs

Alternatives

- Organic residues from industrial processes
- Whey, abattoir waste, brewery residues

Brewery residues

- Co-substrate in Biogas process
- Medium gas yields
- Potential

p-Coumaryl alcohol Coniferyl alcohol Sinapyl alcohol

Why is biogas yield only medium?

- Ligno-cellulose content (50-75%)
- Non-accessable to bacteria

How can biogas yield be improved?

- Feedstock pre-treatment
- Different methods
 - Biological (Enzymes)
 - Mechanical (Milling)
 - Physical (Steam explosion)
- Thermo-chemical (diluted acid)

Approach: Multistep process

Step 1: TC-pretreatment

Step 2: Biogas production

Step 3: Catalyst recovery

Thermo-chemical pre-treatment of lignocellulosic substrate

Formation of monomeric sugars

Prevention of Maillard products (HMF, Furfural)

Finding the right parameter set-up

Forming of CH-monomers

Forming of thermal by-products

Excellent Technologies

Step 1: TC-pretreatment

Step 2: Biogas production

Step 3: Catalyst recovery

Process step 2: Multistage digestion

- Increasing efficiency by using preacidification
- Optimising process

Biogas production: Comparing different set-ups

Gas yield	BSG	+H ₂ SO ₄		MW140 (++)	MW160 (+)	MW160 (+++)
Nm³/ t VSS	277	237	402	429	458	511
	100 %	- 14.5 %	+ 44.7 %	+ 54.7 %	+ 65.1 %	+ 84.2 %

The THERCHEM project

Step 1: TC-pretreatment

Step 2: Biogas production

Step 3: Catalyst recovery

Process step 3:

Recovery of catalyst (=H₂SO₄)

- H₂S converted in a biotrickling filter to gain sulphuric acid
- Reused for substrate pre-treatment

Sulphuric acid generation by sulphur reducing bacteria

→ sufficient for substrate pre-treatment

From lab scale to demo scale

PRE-TREATMENT

Demoplant

Onsite Integration of this technology into Breweries

- Waste to energy concept
- Integration of energy into the process
- Reduction of use of fossil fuels

Thank you for attention

Markus Ortner BIOENERGY 2020+ GmbH Konrad-Lorenz-Strasse 20 A-3430 Tulln +43 2272 66280 536

Markus.ortner@bioenergy2020.eu www.therchem.eu www.bioenergy2020.eu

