

Aktueller Entwicklungsstand und Perspektiven der bioCRACK Pilotanlage in der Raffinerie Schwechat

Peter PUCHER, R&D BtL BDI - BioEnergy International AG

BDI BioGas

BDI at a glance

Austrian based, highly professional plant engineering and construction company

Tailor-made turn-key solutions

Own biodiesel & biogas technologies "from waste to value"

More than 40 reference plants on 4 continents, since 1991

Strong in-house r & d (5 – 10% of annual revenue)

Key figures 2013:

Staff: 113 employeesTurnover: € 36 MioEquity ratio: 67%Stock market listed in Frankfurt

bioCRACK - Concept

In liquid phase pyrolysis (LPP) a hot liquid is used as heat carrier

To succeed with LPP one need to use a heat carrier oil where cracking is desired!

bioCRACK - Process Scheme

bioCRACK - Refinery Integration

bioCRACK Pilot Plant

Facts and figures

- Project duration: April 2010 2014
- Project cost: €7 Mio (Grand by Austrian Climate and Energy Fund: €2,0 Mio.)
- Dimensions: basis: 7,5x7m, height: 21,5m
- Steelwork: 60 tons
- Pipes: >2.000 m
- I/O: > 700
- Engineering demand: ~ 17.000 hours
- Feed capacity: 100 kg/h biomass and 1000 kg/h heavy oil
- Pressure: atmospheric
- Temperature: up to 400°C

BDI BioDiesel

bioCRACK Pilot Plant

Integrated pilot plant at the OMV refinery Schwechat/Austria

BDI BioDiesel

BDI BioGas

bioCRACK - Feedstock

Ideal biomass for bioCRACK is renewable lignocelluloses

- + Low water content
- + Low nitrogen, chlorine, toxics
- + Fine particle size (<5mm) possible

Examples:

- Wood chips (soft and hard wood)
- \circ Forestry residues
- o Chopped straw/agricultural residue

Biomass contains up to 50% oxygen in complex molecular structure. Oxygen is unwanted element in liquid fuels and has to be removed to reach requested fuel quality!

BDI RetroFit

bioCRACK - Biomass Conversion

Mass-conversion of biomass vs. temperature

bioCRACK - Diesel Fuel

Upgrading of raw diesel to EN590 quality is possible

Parameter	Untreated raw diesel	After hydro treatment	EN 590
Density (15°C)	868 kg/m³	833 kg/m³	820 - 845 kg/m³
Viscosity (40°C)	2,53 mm²/s	n.a.	2 - 4,5 mm²/s
Cetan	44	53	> 51
C/H/O	85/13/2 wt.%	86/14/0 wt.%	n.a.
Volatile <350°C	83 wt.%	86 wt.%	> 85 % (v/v)
Sulfur	177 mg/kg	3 mg/kg	< 10 mg/kg

Results from bioCRACK pilot plant and hydrogenation at OMV/Schwechat Feedstock: spruce

BDI CRACK)

BDI BioDiesel

bioCRACK - Biochar

Analysis of biomass (spruce) and biochar

		Biomass (spruce)	Biochar
Carbon	[wt.%]	50	81
Hydrogen	[wt.%]	6.3	5.4
Nitrogen	[wt.%]	0.0	0.3
Rest (Oxygen + Ash)	[wt.%]	44.2	13.4

Utilisation:

- Renewable solid fuel for combustion
 - ✓ Additive in steel industry, construction material,....
 - \checkmark Fertilizer and carbon sink
 - ✓ Further upgrading to transportation fuel

bioCRACK - Pyrolysis Oil

Dehydration of bioCRACK pyrolysis oil is possible

		Pyrolysis Oil	Pyrolysis Oil dehydrated	Crude Oil ¹
Water Content	[wt.%]	50	8	0.1
Lower Calorific Value	[kJ/kg]	8700	29000	43100
Carbon	[wt.%]	22	72	83 - 86
Hydrogen	[wt.%]	10	9	11 - 14
Oxygen	[wt.%]	68	19	<1
Nitrogen	[wt.%]	<1	<1	<1

Utilisation: \checkmark Renewable liquid fuel for combustion

¹Mortensen et al., Applied Catalysis A: General, 407 (2011)

- \checkmark Source for chemicals
- \checkmark Further upgrading to transportation fuel

R&D – HDO of Pyrolysis Oil

bioBOOST Hydro-Deoxygenation of bioCRACK pyrolysis oil

R&D – Properties HDO Pyrolysis Oil

	unit	Feed	HDO 1 st step	HDO 2 nd step	Diesel
Water content	[wt.%]	50	11	0.2	0.02
LHV	[MJ/kg]	8.7	26.4	41.2	42.5
Density	[kg/m ³]	1070	1100	870	845
Viscosity	[mPa s]	4	163	4.5	4.5
Carbon conten	t [wt.%]	25.6	62.5	85.5	85.9
C14 content	[wt.%]	100	100	28	<7
Hydrogen	[wt.%]	9.2	8.3	12.1	13.3
Oxygen	[wt.%]	64.9	28.7	1.9	<1
Nitrogen	[wt.%]	<1	<1	<1	<1
BDI 😋	bio CRACK		BDI BioDiesel BDI	BioGas BDI Retrof	Fit

bioCRACK Status and Outlook

Ongoing FFG Project ScaleUp:

- Completion of test phase in Sept 2014
- Ongoing engineering for Up-scaling to demonstration plant
- Elaboration of the GHG-saving potential (Joanneum Research)
- Economic assessment in cooperation with OMV
- Continued Research Project "bioBOOST":HDO of bioCRACK pyrolysis oil in cooperation with TUG

BDI BioDiesel

BDI BioGas

BDI RetroFit

bioCRACK Partners

BDI Constant BDI – BioEnergy International AG

OMV Refining and Marketing GmbH

Institute of Chemical Engineering and Environmental Technology Prof. Dr. M. Siebenhofer

Austrian Climate & Energy Fund "New Energies 2020"

www.bdi-bioenergy.com

from Waste

BDI BioDiesel

BDI BioGas

