

www.ieaghg.org

Global Developments in Industrial CCS & Overview of IEAGHG Industry CCS Activities.

John Gale

General Manager IEA Greenhouse Gas R&D Programme CCS in Industry Workshop Vienna, Austria 28th April 2014

Carbon capture and storage

2013 CCS Roadmap: Key findings

- CCS is a **critical component** in a portfolio of low-carbon energy technologies, contributing 14% of the cumulative emissions reductions between 2015 and 2050 compared with business as usual.
- The individual component technologies are generally well understood. The largest challenge is the integration of component technologies into large-scale demonstration projects.
- Incentive frameworks are urgently needed to deliver upwards of 30 operating CCS projects by 2020.
- CCS is not only about electricity generation: 45% of captured CO₂ comes from **industrial applications** between 2015 and 2050.
- The largest deployment of CCS will need to occur in non-OECD countries, 70% by 2050. China alone accounts for 1/3 of the global total of captured CO₂ between 2015 and 2050.
 - The urgency of CCS deployment is only increasing. **This decade is critical** in developing favourable conditions for long-term CCS deployment.

Rationale for CCS: Only large-scale option for many industries

Figure 1. Global emissions from the seven most CO₂-intense industrial sectors in the IEA Energy Technology Perspectives analysis

CCS is the only large-scale mitigation option for many industrial sectors.

Commercial Application of CCS (to date)

Sleipner 1Mt/y CO₂

Weyburn In-Salah 2.5 Mt/y CO₂ 1.2 Mt/y CO₂

Snohvit 0.7Mt/y CO2

Gorgon 4Mt/y CO₂

160km sub sea pipeline

Industry Sector drivers

- CO₂ removed to meet pipeline standards
 - High purity CO2 stream
- Additional costs of injection low relative to power plant
 - Norway = offshore emission tax \$35/t
- CO₂ capture plants in close proximity to storage resources
- Industry has gas injection/storage reservoir expertise

Major CCS Demonstration Projects Project Locations & Cost Share

Portfolio of Capture and Storage Approaches

	Plant Type		Sequestration			Foodstock
	Power	Industrial	Saline	EOR	Rate*	Feedslock
Pre-combustion						
HECA (IGCC-Polygen)	х	x		X	2.55	NM Sub-bituminous Coal/Petcoke Blend
Southern-Kemper Co. (IGCC)	x			Х	3.0	MS Lignite
Summit Texas (IGCC-Polygen)	х	x		х	2.2	WY Sub- bituminous Coal
Leucadia, Lake Charles (Methanol & Hydrogen)		х		X	4.5	Petroleum Coke
Air Products and Chemicals, Inc. (SMR)		х		X	0.925	Natural Gas
ADM (Ethanol Production)		X	Х		0.900	Corn Fermentation
Post-combustion						
NRG Energy	х			x	1.4	WY Sub-bituminous Coal
Oxy-combustion						
FutureGen 2.0	x		x		1.0	IL Bituminous /PRB Coal Blend

CCPI

ICCS

FutureGen 2.0

2.0 *Rate in million metric tons per year

Archer Daniels Midland Company (ICCS) CO₂ Capture from Biofuel Plant

- Decatur, IL
- CO₂ is a by-product (>99% purity) from production of fuel grade ethanol via anaerobic fermentation
- Up to 90% CO₂ capture; dehydration (via triethylene glycol) and compression – ~900,000 tonnes CO₂ /year
- Sequestration in Mt. Simon Sandstone saline reservoir
- Total Project: \$208 Million
 DOE Share: \$141 Million (68%)

Key Dates

- Phase 2 Awarded: Jun 15, 2010
- FEED Complete: Apr 2011
- NEPA FONSI: Apr 2011
- Construction start: May 2011
- UIC Class VI Injection Well Permit: Q2 2014
- UIC Class VI Operating Permit: Jan 2015
- Sequestration start: Feb 2015

Status

- Construction ~60% complete
- UIC Class VI permit submitted: Jul 2011
- Two monitoring wells drilled: Nov 2012
- Commissioning compression and dehydration: began in July 2013

Leucadia Energy (ICCS) Petcoke Gasification to Methanol

- Lake Charles, LA
- GE Energy Gasification
 (4 gasifiers: 3 hot/1 spare)
- 700 million gallons/year methanol; 110 mmscfd hydrogen
- Fuel; Petcoke
- 89% CO₂ capture (Rectisol[®] process);
 4,500,000 tonnes CO₂/year
- CO₂ to Denbury pipeline for EOR in Texas at West Hastings oil field
- Total Project: \$436 Million

Key Dates

- Phase 2 awarded: Jun 17, 2010
- Complete CCUS FEED: Jul 2011
- Financial close: March 2014 (est.)
- Construction: March 2014 (est.)
- Operation: Mar 2017 (est.)

<u>Status</u>

- Product off-take contracts finalized (BP, APCI)
- NEPA ROD released on Dec 28, 2013
- FEED in progress for gasification plant

Air Products & Chemicals (ICCS) Steam Methane Reforming with CO₂ Capture

- Port Arthur, TX (Hydrogen plant at Valero Refinery)
- 90%+ CO₂ capture (Vacuum Swing Adsorption) from 2 steam-methane reformers (SMRs) yielding ~925,000 tonnes CO₂/year
- ~30 MWe cogeneration unit to supply makeup steam to SMRs and operate VSA and compression equipment
- CO₂ to Denbury for EOR West Hastings oilfield
- Total Project: \$431 Million
 DOE Share: \$284 Million (66%)

Key Dates

- Phase 2 Awarded: Jun 15, 2010
- FEED complete: Nov 2010
- Permit By Rule (PBR) and Standard Air Permits issued: May 2011
- NEPA FONSI: Jul 2011
- Construction start: Aug 2011
- Operation start: Dec 2012

Status

- PA-1 initiated operation: Mar 3, 2013
- PA-2 initiated operation: Dec 16, 2012
 - Operating continuously since Dec 31, 2012
 - Total CO₂ delivered: 680K tons (Dec 2013)
 - Full capacity achieved: April 2013
- Final MVA report submitted: Feb 2013

ESI CCS Project Technical Overview

CO2 Source (ESI) and Capture

CO2 Transportation

CO2 Injection in Rumaitha & Bab fields

Abu Dhabi CCS: Future Potential

CO₂ as an EOR agent has been endorsed:

- Success of the ESI CCS Project and Rumaitha / Bab Injection are key to future development.
- Changing landscape in Abu Dhabi with potential CO₂ targets for field testing and development:
 - CO₂ capture linked to ADNOC field demand and performance;

Whilst preliminary, the EAA CCS Value Proposition study forecast a growing CO₂ demand in the next 25-30 years, based on ADNOC estimations.

EU Zero Emission Platform Report 2013

- EU 2011 Roadmap for a competitive low carbon economy in 2050,
- Emission reductions will be required to take place in all sectors,
- CO₂ emissions from the industrial sectors reduced by 34% to 40% by 2030, and by between 83% to 87% by 2050.
- Only CCS can provide the required largescale emission reductions in EU industry

US Industrial CCS Drivers

CO2-EOR Driving Expansion Of Industry CCS.

Source: Advanced Resources International Inc. based on OGJ EOR/Heavy Oil Survey 2014 and other sources

EU Industry considerations

- Core business is making <u>globally competitive</u> products e.g. steel, cement, chemicals......
- Is there a business case for CCS in industry?
 - Probably not –price on CO2 currently too low
- Industry has no experience of transport and storage
 - same as power sector initially
- Ideally would like a storage company to handle out of gate storage
 - No market outside North America such as EOR
 - In EU therefore no such companies currently exist

Infrastructure considerations

- Each industrial site will be site specific
 - No generalities possible like CCS Ready Guidelines for Power sector
- Need a gas gathering system?
 - More than one stack
 - Central capture plant or multiple?
 - Or do you target most competitive single source 45% capture enough
- Development of transport infrastructure
 - Strategic planning
 - Who pays?

Hubs and Clusters

- Port of Rotterdam
- Port of Antwerp (Belgium)
- LeHavre (France)
- Humberside
- Baltic Sea Energy Co-operation (BASREC)

Central North Sea - CO2 Storage Hub : Enabling CCS deployment in the UK and Europe

Experience to date

- Experience from demonstration projects in power sector
 - Need to start storage assessments early
 - Highest source of project risk
 - Large up front cost, which you may lose
 Who pays for those costs and takes the risks?
 - Who undertakes work? geological surveys or geoengineering contractors
 - Biggest issue regarding public acceptance
 Security of storage issues

Some Examples of CCS Research in Steel Industry

- ULCOS Project Europe
 - Developing oxy blast furnace with top gas recycle and capture
- Japan COURSE 50 Project
 - Demonstrate post combustion capture from blast furnace – 30tpd pilot scale

Korea

 Demonstrate ammonia scrubbing of blast furnace gas, 2nd stage pilot testing (~10tpd)

CCS Research in Cement Industry

- European Cement Research Association (ECRA)
 - Phased development project for pilot scale demonstration of oxy fuel firing of cement kiln in late 2013.
- NORCHEM/CLIMIT & ECRA
 - Pilot scale project for post combustion capture on cement kiln in 2013/14
- ITRI Taiwan
 - 10 MW Calcium Looping pilot plant constructed in 2013

Industry CCS activities

Steel sector

- 1st Steel industry CCS workshop with VDEH in Germany in November 2011
- Techno- economic assessment of CCS in steel sector completed 2013
 Included a case evaluating Oxy-Blast Furnace with TGR & MDEA CO2 Capture
- Overview of the current state and future development of CO2 capture technologies in the Iron Making Process, TR3, April 2013
- 2nd Steel industry CCS workshop in Japan November 2013 collaboration with WSA and IETS

Cement Industry

- Techno- economic assessment completed in 2008
- Studies on barriers to implementation completed in 2013 (with GCCSI)

Oil Refining Sector

- Techno- economic assessment to start mid 2014
- Industrial sources of Hydrogen to start late 2014
- Natural Gas Processing
 - CO₂ Capture by novel solid adsorption processes underway
- Pulp and Paper Study in planning for 2015 start

www.GHGT.info

Technical Programme

- Two technical sessions – 10 papers on CCS in Industry
- 20 industry CCS papers in poster sessions
- One panel discussion session on Industrial CCS

AUSTIN TX

Key dates

- Registration opened
- Early bird closes

7th March 2014 13th June 2014

October 5 - 9 TWO THOUSAND FOURTEEN AUSTIN, TX – USA