## IEA Bioenergy







# The Possible Role of Biogas in a BioEconomy

Bernhard Drosg

University of Natural Resources and Life Sciences, Vienna Dept. for Agrobiotechnology (IFA Tulin)
Institute for Environmental Biotechnology



## The biogas process – An introduction







#### **Feedstocks**

#### **Energy crops:**

Maize, sorghum, etc.

#### **Industrial byproducts:**

Food processing residues
Biorefinery residues

#### Wastes:

Food waste

**Biowaste** 

Grass and gardening waste

etc.

### **Biogas plant**



#### **Biogas**



### **Digestate**



## Why biogas in a bioeconomy?







- The increased biomass utilisation in a bioeconomy will increase the amount of biomass residues
  - → demand for treatment
- Rising energy costs produce a trend towards energy self-sufficient production processes
  - → energy recovery from residues/byproducts
- Worldwide nutrient reserves will deplete in future
  - → demand for recirculating the nutrients from the biomass to the fields

Anaerobic digestion of industrial byproducts for reducing process energy demand





#### **Industrial byproducts:**

Food processing residues

Biorefinery residues

#### **Biogas plant**



### **Biogas**



### **Digestate**



## **Existing examples in food industry**











- Austria's biggest <u>slaughterhouse</u> Großfurtner (Utzenaich): near thermal energy self-sufficiency by utilising residues (blood, rumen content, fats, etc.) for biogas and geothermal energy
- <u>Dairy industry</u>: Landfrisch Molkerei (Wels, Austria) utilises the byproduct whey for energy recovery (CHP unit, 40% coverage of heat demand, renewable electricity generation)
- Sugar industry: Hungrana (Kaposvár, Hungary), almost energy selfsufficient by utilising pressed sugar beet pulp

## Anaerobic digestion of byproducts in an energy-driven biorefinery (bioethanol plant)





















## Overview of the process









## **Byproducts in the process**









## Potential for thermal energy recovery depending on byproduct





|                | Mass flows            | Coverage by biogas | Animal feed production |
|----------------|-----------------------|--------------------|------------------------|
|                | $[10^6 \text{ t/yr}]$ | [%]                | [10 <sup>6</sup> t/yr] |
| Whole stillage | 1.10                  | 128                | <del>-</del>           |
| Thin stillage  | 0.81                  | 41                 | 0.10                   |
| Wet cake       | 0.28                  | 57                 | 0.07                   |
| Syrup          | 0.24                  | 40                 | 0.10                   |
| Condensate     | 0.57                  | 2.5                | 0.17                   |

<sup>→</sup> Energy demand for digestate processing not included

## Production of a biofertiliser – Utilising the digestate









#### **Industrial byproducts:**

Food processing residues

Biorefinery residues

### **Biogas plant**



#### **Biogas**



## Digestate



## Why biofertiliser production?







- In biorefineries C is transformed into chemicals and fuel what happens with the nutrients (N,P,K) of the biomass?
- The bioeconomy is a driver to replace fossil-based fertilisers by fertilisers based on renewable materials (biofertilisers)
- P and K reserves will be depleted in future by utilising biofertilisers nutrients can be recycled to the fields
- In large-scale biogas plants (e.g. byproduct treatment in biorefineries)
   standard land application is often not possible any more
  - → bottleneck digestate utilisation
  - → concentration of the nutrients is necessary

## **Current technologies in use**





- Decanters
- Screw presses
- Vibrating sieves
- Evaporation
- Membrane treatment
- Dryer
- Composting
- NH<sub>3</sub>-Stripping
- etc.



## Possible biofertiliser products from digestate







- Digestate compost (solids/fibre fraction, P-rich)
- Nitrogen-fertiliser (after NH<sub>3</sub>-stripping)
  - Ammonium sulphate
  - Ammonium water
- Dried digestate pellets (solids/fibre fraction, P-rich)
  - Recycling of residual carbon (soil improver)
- Struvite precipitation (MAP NH<sub>4</sub>MgPO<sub>4</sub>\*6H<sub>2</sub>O)
- Liquid nutrient concentrate (membrane, evaporation)
- → Bottleneck is establishing the market for products



## Alternative digestate nutrient utilisation – Mineralised nutrients for algae growth











## Other biogas research activities: Anaerobic cellulose degraders







#### Anaerobic (hemi-)cellulolytic populations









#### **Conclusions**







- ➢ Bioeconomy: Increased biomass utilisation → demand for biogas
- Food industry: Energy recovery by biogas from industrial byproducts is already realised today (slaughterhouse, dairy, sugar factory, ...)
- ➤ Biorefineries: Accumulation of liquid byproducts containing organic carbon will demand biogas technology
  - ➤ High potential for energy recovery by biogas
  - ➤ Bottleneck digestate utilisation
- Biofertiliser production
  - > A lot of different technologies currently applied (case-dependent)
  - Currently limited markets exist for biofertilisers from digestate
- > Alternative usage: Digestate as nutrients for algal growth

## The Austrian participation in the IEA Bioenergy Task 37 is supported by the Austrian Federal Ministry for Transport, Innovation and Technology





•

BOKU – Universität für Bodenkultur, Wien University of Natural Resources and Applied Life Sciences, Vienna Department for Agrobiotechnology, IFA-Tulln, Institute for Environmental Biotechnology

DI Dr Bernhard Drosg Konrad Lorenz Straße 20, A-3430 Tulln

Tel.: +43 2272 66280-537, Fax: +43 1 2272 66280-503

bernhard.drosg@boku.ac.at, www.boku.ac.at, www.ifa-tulln.ac.at





**IEA Bioenergy**