

Skagen CHP plant

- CHP capacity: 13 MWe and 16 MWth (Three 4.3 MWe Wärtsilä Natural Gas engines
- 250 MWh heat storage
- 37 MW peak load boilers
- 10 MW electric boiler
- Heat Pumps Investment under

bvm@plan.aau.dk

Cost of entering primary automatic reserves market

- Cost of making +- 1.4 MW available on the engines: Only approx. 27.000 EUR.
- Investing in 10 MW electric boiler:
 Approx 0.7 MEUR.

Brian Vad Mathiesen bvm@plan.aau.dk

Short-term system integration

- Denmark can operate a system with 20% Wind and 50% CHP
- By adding heat pumps to the CHP units the integration of wind power can be raised to approx. 40% with-out loosing efficiency (nor wind power)
- Including the CHP plants in the various electricity markets is essential.
- Once the markets are open for CHP plants the cost of entering them seems small.

Brian Vad Mathiesen

Example of technology study: System integration options Open energy system Open energy system Ref. CHP reg. Ref. no CHP reg. Wind power production (TWh) Observed Markinsen bom@plan.azu.dt

Recommendations I

- Make CHP unit regulation depend on wind power input (10-20% wind without loss of efficiency)
- Add heat pumps (and heat storage capacity) to the CHP units (approx. 40 per cent Wind Power)
- Use electricity for transport as much as possible
- Other kinds of flexible demands are of less importance

Recommendations III The kind of flexibility one need from a

technical point of view in a closed system (CHP, HP and transport) is the same kind of flexibility which is needed to raise profits of

exchange in an open system.

Smart energy systems are crucial in 100% renewable energy systems

Electricity smart grids are only one part of this system. The scenarios rely on a holistic *smart energy system* including the use of:

- Heat storages and district heating with CHP plants and large heat pumps.
- **New electricity** demands from large heat pumps and electric vehicles as storage options.
- Electrolysers and synthetic liquid fuel for the transport sector, enabling energy storage in a dense liquid form;
- The use of gas storage and gas grids for biogas and syngas/methane

Flexible integration of electricity, heat, gas and transport www.CEESA.plan.aau.dk

Brian Vad Mathiesen

