

TASK39

Aging behavior of polymeric absorber materials for solar thermal collectors

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY Susanne Kahlen, Gernot M. Wallner, Reinhold W. Lang

July, 2011

Introduction – Plastics based collectors 2

Application in Northern Europe

System conditions: > operation - water at 80 °C

➤ stagnation - air at 140 °C

 \rightarrow only few comparable systems with plastics available

No <u>comprehnsive and scientifically founded</u> understanding of the aging behavior and the long-term stability of plastics for solar thermal absorber applicatons Methodology – Testing pyramid

Methodology – Materials and exposure conditions

Designation	Polymer type	Commercial designation	Material supplier
PPE+PS	Polyphenylene ether polystyrene blend	Noryl EN 150SP	Sabic Innovative Plastics
PC	Polycarbonate	Makrolon 3103	Bayer Material Science
PA12	Polyamide 12	Grilamid L25H, Grilamid L25ANZ	EMS-CHEMIE
PP	Polypropylene random	Beta-PPR RA7050,	Borealis Polyolefine
	copolymer	RA130E-8427	

System level:

Outdoor exposure under stagnation (northern climate): 1 winter, ½ summer, 1 summer, 1 year, 2 years

<u>Specimen and component level</u>: Laboratory aging: - in air at 140 °C up to 500 h (northern climate) - in water at 80 °C up to 16000 h PCCL

Tensile Testing

DSC and SEC analysis

- → Characteristic parameter for aging: strain-to-break ($\epsilon_{\rm B}$)
- → Morphology and thermal properties (e.g., crystallinity, T_m, T_g, T_{ox})
- → Weight average molecular mass

Methodology – Characterization and Testing

Component level

- \rightarrow Characteristic parameter for aging: indentation at break (I_B)
- → Morphology and thermal properties (e.g., endothermic and exothermic effects, T_g, T_{ox})

DSC analysis

5

PCCI

PPE+PS - Effect of exposure to hot water at 80°C

- PCCL

PCCL

Results – Specimen level: Aging behavior of PPE+PS

PPE+PS - Effect of exposure to hot air at 140°C

PCCL

PA12 - Effect of exposure to hot water at 80°C

Results – Specimen level: Aging behavior of PA12

PA12 - Effect of exposure to hot air at 140°C

SEC: slight increase in weight average molecular mass initially 10

PP - Effect of exposure to hot water at 80°C

SEC: no significant change in weight average molecular mass

Results – Specimen level: Aging behavior of PP

PP - Effect of exposure to hot air at 140°C

SEC: no significant change in weight average molecular mass

Results – Specimen vs. component level: PPE+PS

Results – System level vs. Component level: PPE PS- PCCL

13

- PCCL

Conclusions:

- Scientific approach was corroborated efficient material screening for solar-thermal absorbers is possible on **specimen level**
- β-PP and PA12 grades exhibited better long-term stability compared to the PPE+PS reference grade
- > AVENTA (Oslo, N): PPS for absorber used

Outlook:

- Competition with conventional solar thermal collectors by the use of commodity plastics (e.g., PP, PE) modified to the exisiting application and/or filled with fillers (carbon, etc.)
- Modification of solar thermal system to reduce max. stagnation temperature by design or by overheating protection (e.g., functinal polymers)