March 31, 2011 – Highlights der Bioenergieforschung - Wieselburg

Impact of Oxygenates in Diesel Fuel Blends on Engine Emissions and Combustion Properties

Philipp Teiner, Bernhard Geringer, Peter Hofmann Markus Maly, Peter Staub

Institute for Powertrains & Automotive Technology

Impact of Oxygenates in Diesel Fuel Blends on Engine Emissions and Combustion Properties

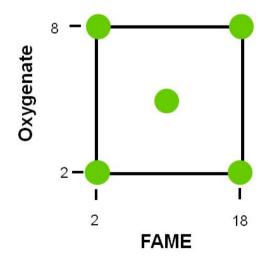
Outline

Ш	Introd	luction	and	las	k L	escr	ipti	on

- ☐ Technical Data of Test Engine
- ☐ Chemical Analysis
- □ Combustion Properties
- ☐ Consumption
- ☐ Engine Emissions
- ☐ Summary and Outlook

Introduction

Climate protection conventions (e.g. Kyoto Protocol)
Increased utilization of renewable primary products


- ☐ EU: Renewable Energy Directive (RED) and Fuels Quality Directive (FQD)
 - 10 energ.% biofuels from transport fuel pool
 - → 20% green house gas savings
- ☐ Currently known substitutes: FAME, BTL or HVO
 - Bad quality (viscosity, oxidation stability) for higher blends (FAME)
 - Inadequate raw material base (BTL, HVO)
 - Expensive production process (BTL, HVO)
 - Maximum 7 vol.% FAME approved by car manufacturers

Task Description

- ☐ Investigation of new biogenic oxygenates which fulfill ethical, ecological and economical requirements
 - Diesel substitute
 - Interaction with FAME containing diesel
- ☐ Investigated oxygenates
 - Glyme, Alcohol, Polyether, Tributylcitrat, Levulinat, Valeriat
- ☐ Design of Experiments of fuel blends
- □ Presented oxygenates
 - Glyme (Tetra-Glyme)
 - Alcohol (Butanol)

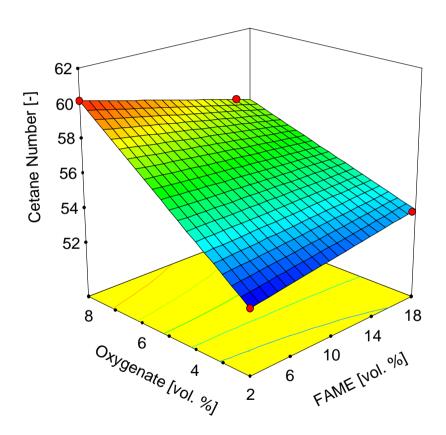
Technical Data of Test Engine

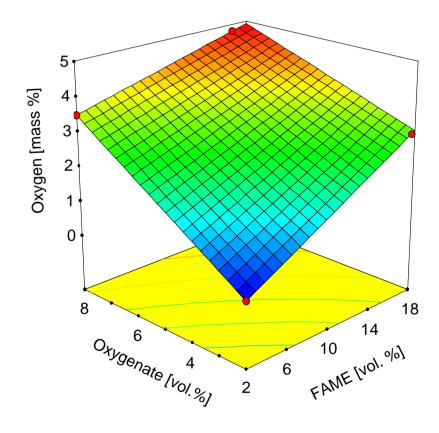
Diesel engine N4	7 D20 U1 (BMW)
Cylinder	4 inline
Bore [mm]	84
Stroke [mm]	90
Displacement [cm³]	1995
Compression Ratio	16
Power [kW]	105 at 4000 [rpm]
Max. Torque [Nm]	320 at 1750 [rpm]
Injection System	Common Rail
Turbo Charging	Var. Turbine Geometry

Chemical Analysis

Tetra-Glyme ($C_{10}H_{22}O_5$)

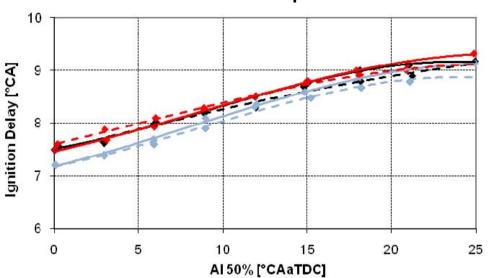
Butanol (C₄H₁₀O)

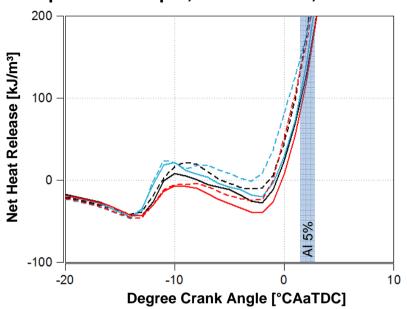

		Oxigenat	FAME	В0	С	Н	0	C/H	CN	Density	Flash Point	Heat Value
		[\	ol. %]		[r	nass %]	[-]	[-]	[kg/m³]	[°C]	[MJ/kg]
8	-	0	o	100	86	14	0	6,14	52,1	829	61	43,5
B.	-	0	18	82	84,5	13,5	1,8	6,26	54,1	838,6	64,5	41,955
Glyme	Tetra-Glyme –	8	2	90	82,9	13,4	3,5	6,19	60,2	842,9	63,5	41,209
	Tetta-Glyffle	8	16,56	75,44	81,6	13,1	4,8	6,23	57,8	851	66,5	40,431
loho	Butanol	8	2	90	84,7 13,7 1,6	6,18	48,1	828,2	39,5	42,201		
Alcohol	Dutanor	8	16,56	75,44	82,7	13,5	3,2	6,13	49,9	8,35,8	38,5	41,083



Chemical Analysis

Tetra-Glyme

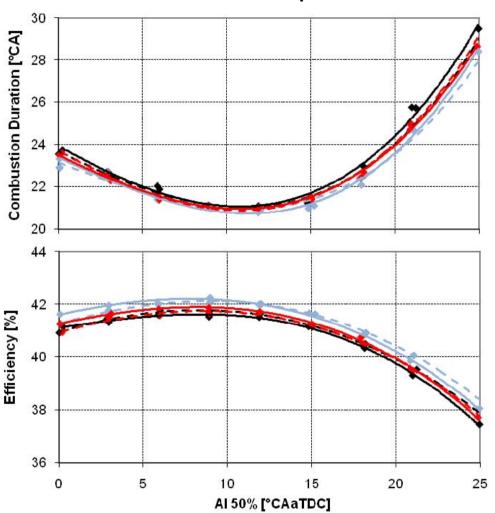




Combustion Properties

Loadpoint: 2000 rpm, 15 bar BMEP, 12°CAaTDC

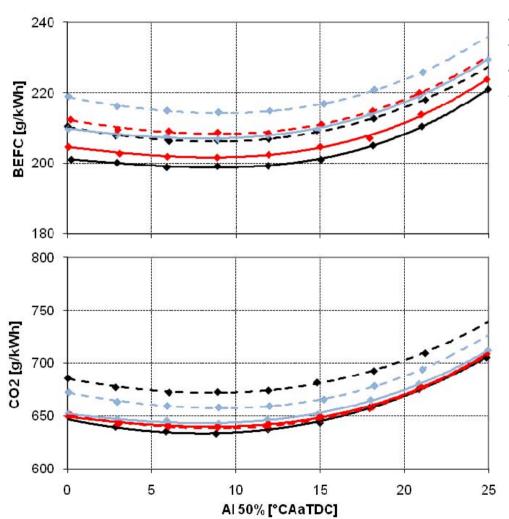
- ➤ Additivation of Tetra-Glyme increases CN
 - higher and faster net heat release
- ➤ Additivation of Butanol decreases CN
 - lower and slower net heat release
- ➤ Additivation of FAME has only minor impact on CN and combustion properties


		CN
		[-]
	В0	52,1
. – –	B18	54,1
	Tetra-Glyme	60,2
	Tetra-Glyme + FAME	57,8
	Butanol	48,1
	Butanol + FAME	49,9

Combustion Properties

Variation of AI 50% at 2000 rpm and 15 bar BMEP

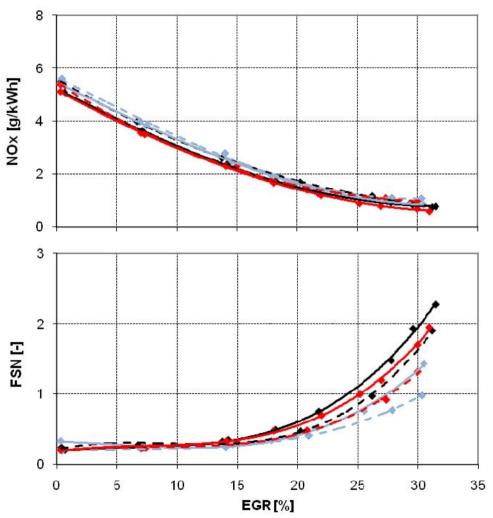
		CN	0
_		[-]	[mass %]
	В0	52,1	0
	B18	54,1	1,8
	Tetra-Glyme	60,2	3,5
. – –	Tetra-Glyme + FAME	57,8	4,8
	Butanol	48,1	1,6
	Butanol + FAME	49,9	3,2


- ➤ Additivation of Tetra-Glyme reduces combustion duration
 - Increase of efficiency
- ➤ Additivation of butanol has only minor impact on combustion duration and efficiency
- ➤ Additivation of FAME has only minor impact on combustion duration and efficiency

Consumption

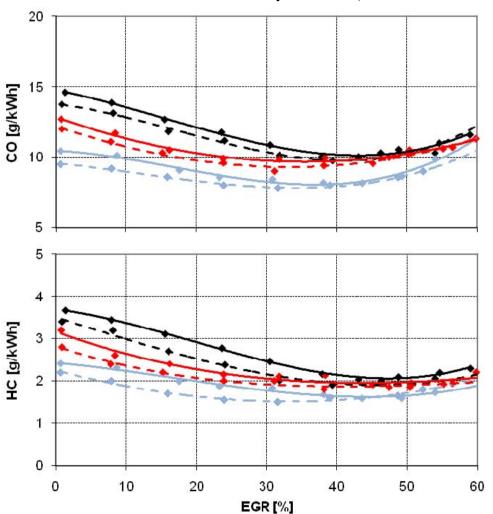
Variation of AI 50% at 2000 rpm and 15 bar BMEP

ı		Density	Heat Value	С
		[kg/m³]	[MJ/kg]	[mass %]
	ВО	829	43,5	86
	B18	838,6	41,955	84,5
	Tetra-Glyme	842,9	41,209	82,9
. – –	Tetra-Glyme + FAME	851	40,431	81,6
	Butanol	828,2	42,201	84,7
	Butanol + FAME	835,8	41,083	82,7


- ➤ Additivation of oxygenate decreases heat value
 - Increase of gravimetric consumption
- ➤ Additivation of FAME further decreases heat value
 - Further increase of gravimetric consumption
- ➤ CO₂-emissions dependent on relation between gravimetric consumption and mass of carbon in fuel blend

Limited Emissions (NO_x and Particle)

		CN	0
		[-]	[mass %]
	В0	52,1	0
	B18	54,1	1,8
	Tetra-Glyme	60,2	3,5
	Tetra-Glyme + FAME	57,8	4,8
	Butanol	48,1	1,6
·	Butanol + FAME	49,9	3,2


- ➤ Additivation of Tetra-Glyme decreases combustion duration
 - Higher combustion chamber temperatures
 - Higher NO_x-emissions
- ➤ Additivation of oxygenate and FAME increases oxygen content
 - Reduction of substoichiometric zones
 - Decrease of particle emissions

Limited Emissions (CO and HC)

Variation of EGR at 1500 rpm and 6,5 bar BMEP

	0
	[mass %]
 В0	0
 B18	1,8
Tetra-Glyme	3,5
 Tetra-Glyme + FAME	4,8
Butanol	1,6
 Butanol + FAME	3,2

- ➤ Additivation of oxygenate and FAME increases oxygen content
 - More homogeneous mixture preparation
 - Decrease of CO- and HC-emissions

Summary and Outlook

The additivation of the investigated oxigenates to diesel fuel leads to:
a slight decrease of the combustion duration (Tetra-Glyme)
an increase of the gravimetric fuel consumption
a high decrease of the CO-, HC- and particle emissions
The additivation of FAME to the investigated diesel-oxigenate blends:
has only minor impact on the combustion properties
increases further the gravimetric fuel consumption
leads to a further decrease of the CO-, HC- and particle emissions
Biogenic oxygenates deliver an ecological alternative as a diesel substitute and
enable a high decrease of the CO-, HC- and particle emissions in combination
with FAME. In this context further investigations (Tributylcitrat, Valeriat,
Levulinat) will be undertaken.

Thank you for your attention!

Philipp Teiner

philipp.teiner@ifa.tuwien.ac.at

Institute for Powertrains & Automotive Technology