

## JOANNEUM RESEARCH Forschungsgesellschaft mbH







Assessment of Lingo-cellulosic Bioethanol Concepts in Austria – Technical, Economic and Environmental Aspects

Kurt Könighofer, Philipp Kravanja, Lorenza Canella, Gerfried Jungmeier, Anton Friedl Wieselburg, 31.3.2011

www.jognne



#### **Outline**



- 1. Project Overview
- 2. Bioethanol Plant Concepts
- 3. Technical Data
- 4. Greenhouse Gas Assessment
- 5. Economic Analysis
- 6. Conclusions





### **Project Overview**

- Title: Assessment of Lingo-cellulosic Bioethanol Concepts in Austria – Technical, Economic and Environmental Aspects
- JOANNEUM RESEARCH RESOURCES, Research Group Energy Research
- Vienna University of Technology, Institute of Chemical Engineering, Thermal Process Engineering
  - Process Simulation



- Financed by Austrian Climate and Energy Fund
- Project time: 1.3.2009 30.4.2011





#### **Bioethanol Plant Concepts**

www.joanneum.at



#### Key concept characteristics



- Use of C6 + C5 sugar
- Pretreatment: Steam Explosion
- Enzymatic Hydrolysis
- On-site enzyme production
- Process heat and electricity demand produced from residues (e.g. Lignin)
- Plant size (t Bioethanol per year)
  - Softwood: 50,000 / 100,000 t/y
  - Straw: 50,000 / 100,000 t/y

5 WWW. JOGNNEUM. C



## Concepts

**By-products** 









|   |          | 0     | , ,           |               |  |
|---|----------|-------|---------------|---------------|--|
|   | Straw    | C6    | Electricity   |               |  |
|   | Straw    | C6+C5 | Electricity   |               |  |
|   | Straw    | C6    | Electricity   | Heat          |  |
|   | Straw    | C6    | Ligninpellets |               |  |
|   | Straw    | C6+C5 | Ligninpellets |               |  |
|   | Straw    | C6    | Ligninpellets | Heat          |  |
|   | Straw    | C6    | C5 Molasses   | Ligninpellets |  |
|   | Straw    | C6    | C5 Molasses   | Heat          |  |
| - | Straw    | C6    | Biomethane    | Electricity   |  |
|   | Softwood | C6    | Electricity   |               |  |
|   | Softwood | C6    | Ligninpellets |               |  |
|   | Softwood | C6    | Biomethane    | Electricity   |  |

**Fermentation** 

of sugars

**Feed Stock** 



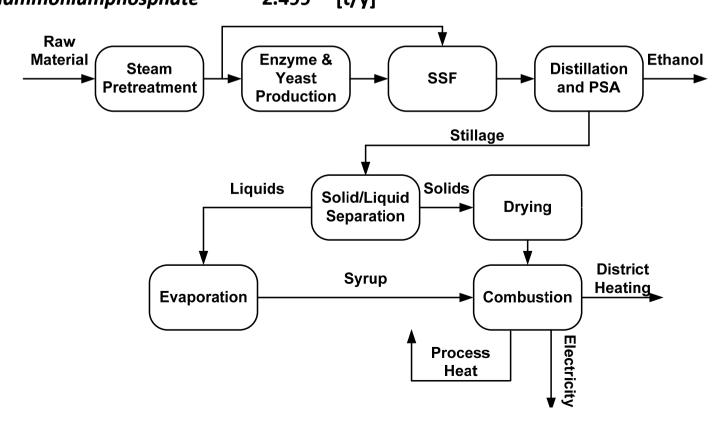


#### **Technical Data**

www.joanneum.at



# 100,000 t/y Bioethanol Concepts Overview


| Feedstock Conversion By-products |            |                           | oducts     |       |             |                         |                             |                 |
|----------------------------------|------------|---------------------------|------------|-------|-------------|-------------------------|-----------------------------|-----------------|
| Туре                             | Total Mass | Sugars in<br>Fermentation | Bioethanol | Heat  | Electricity | C5<br>Molasses<br>(dry) | Lignin-<br>pellets<br>(dry) | Bio-<br>methane |
|                                  | kt/a       |                           | kt/a       | GWh/a | GWh/a       | kt/a                    | kt/a                        | GWh/a           |
|                                  | 648        | C6                        | 100        |       | 379         |                         |                             |                 |
|                                  | 447        | C5+C6                     | 100        |       | 160         |                         |                             |                 |
|                                  | 648        | C6                        | 100        | 1.003 | 305         |                         |                             |                 |
|                                  | 648        | C6                        | 100        |       |             |                         | 246                         |                 |
| Straw                            | 447        | C5+C6                     | 100        |       |             |                         | 117                         |                 |
|                                  | 648        | C6                        | 100        | 580   |             |                         | 191                         |                 |
|                                  | 648        | C6                        | 100        |       |             | 202                     | 56                          |                 |
|                                  | 648        | C6                        | 100        | 551   |             | 202                     |                             |                 |
|                                  | 648        | C6                        | 100        |       | 78          |                         |                             | 822             |
| 0.51                             | 867        | C6                        | 100        |       | 176         |                         |                             |                 |
| Soft-<br>wood                    | 867        | C6                        | 100        |       |             |                         | 114                         |                 |
|                                  | 867        | C6                        | 100        |       | 114         |                         |                             | 219             |





## 100,000 t/y Bioethanol from straw; electricity and heat (EtOH-Straw-C6/Electricity+Heat)

| Straw (90%DM)             | 648.063 | [t/y] | Straw (LHV, dry)         | 365.1 | [MW] |
|---------------------------|---------|-------|--------------------------|-------|------|
| <i>SO2</i>                | 5.832   | [t/y] |                          | 000,2 | []   |
| NH3 (28w/w% in H2O)       | 12.970  | [t/y] | Ethanol (LHV)            | 93.4  | [MW] |
| Molasses (80% DM)         | 6.621   | [t/y] | Electricity              | 38,1  | [MW] |
| Corn Steep Liquor (50%DM) | 19.874  | [t/y] | District Heat            | •     | [MW] |
| Diammoniumphosphate       | 2.499   | [t/v] | _ 1331 133 1 <b>1331</b> |       | []   |

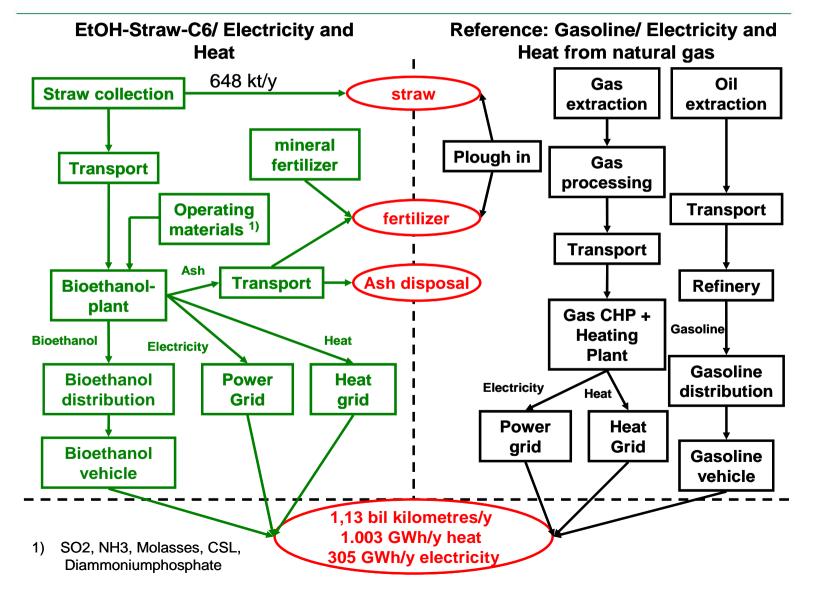


6 WWW a





#### Greenhouse Gas (GHG) Assessment

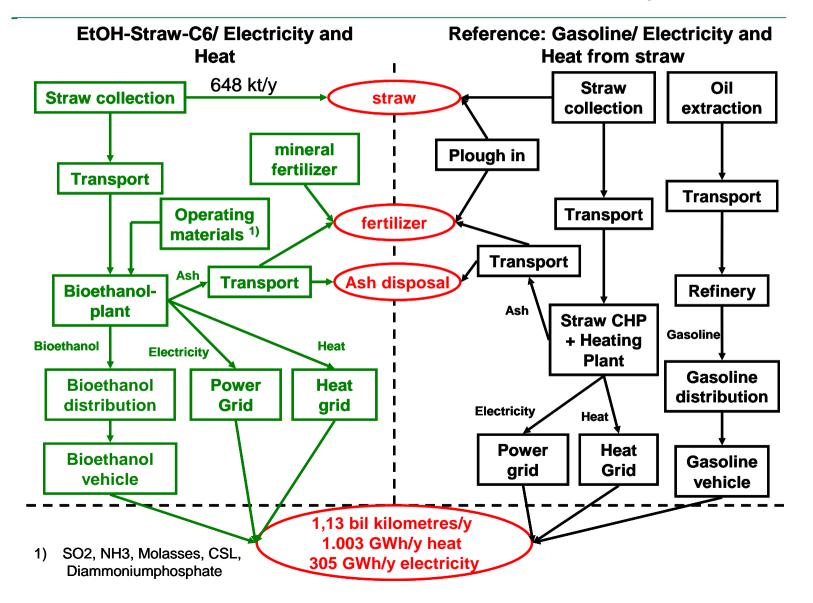

www.joanneum.at



## GHG flow chart: reference fossil EtOH-Straw-C6/Electricity+Heat



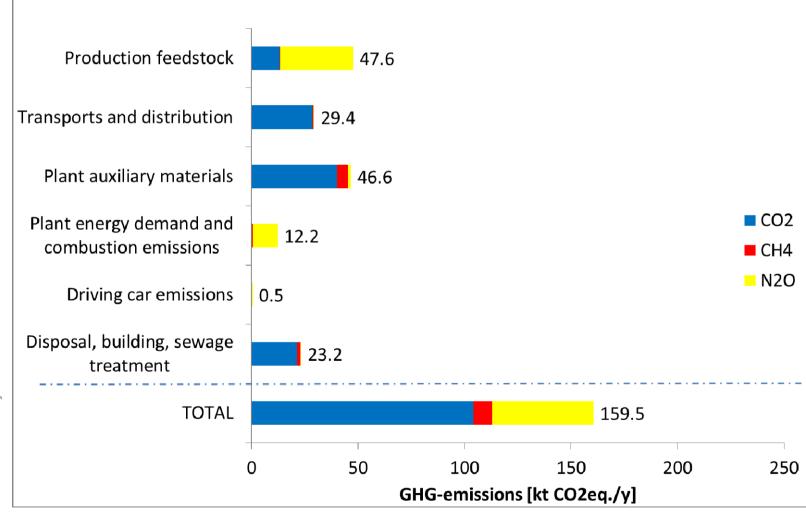
WWW.jo






## GHG flow chart: reference renewable EtOH-Straw-C6/Electricity+Heat

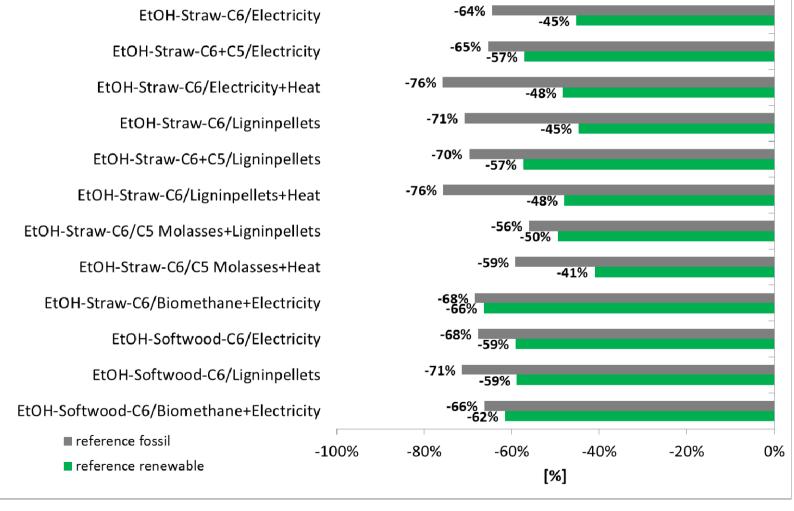



WWW.jo





## GHG Assessment 100,000 t/y EtOH-Straw-C6/Electricity+Heat








## Greenhouse Gas Reduction Concepts overview









# www.joanneum.a

#### **Economic Analysis**





## Economic Analysis Methodology



#### Costs

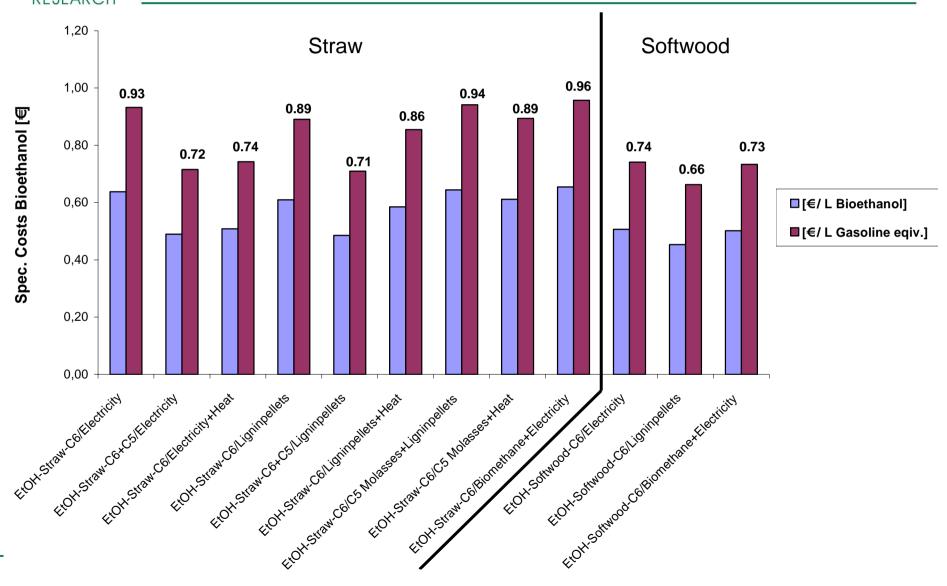
- Investment costs
- Insurance, maintenance
- Operating costs
  - Raw material (straw, woodchips)
  - Personal
  - Operating materials
  - Water demand
  - Waste water

#### Revenues

- Heat
- Electricity
- Ligninpellets
- C5 molasses



## Economic Analysis 100,000 t/y EtOH-Straw-C6/electricity+heat




| Cost Analysis            |                                     |      |  |
|--------------------------|-------------------------------------|------|--|
| Capital costs            | [ mil €/ y ]                        | 26.3 |  |
| Fix operating costs      | [ mil €/ y ]                        | 11.5 |  |
| Variable operating costs | [ mil €/ y ]                        | 61.5 |  |
| of it Personal           | [ mil €/ y ]                        | 1.8  |  |
| of it Raw material       | [ mil €/ y ]                        | 51.9 |  |
| of it Operating material | [ mil €/ y ]                        | 6.6  |  |
| Total costs              | [ mil €/ y ]                        | 99.3 |  |
| Spec. total costs        | [€/GJ <sub>Bioethanol</sub> ]       | 36.9 |  |
| Revenues                 |                                     |      |  |
| Electricity              | [ mil €/ y ]                        | 15.2 |  |
| Heat                     | [ mil €/ y ]                        | 20.1 |  |
| Total revenues           | [ mil €/ y ]                        | 35.3 |  |
| Spec. total revenues     | [€/GJ <sub>Bioethanol</sub> ]       | 13.1 |  |
| Total costs Bioethanol   | [ mil €/ y ]                        | 64.0 |  |
| Spec.costs Bioethanol    | [€/GJ <sub>Bioethanol</sub> ]       | 23.8 |  |
| Spec.costs Bioethanol    | [€ / L <sub>gasoline equiv.</sub> ] | 0.74 |  |

TWWW. OONNOUM. OT



#### Economic Analysis Concepts overview







#### Conclusions

WWW.



# RESEARCH

#### **Conclusions 1**

- Straw and wood are interesting raw materials for lingnocellulosic bioethanol in Austria
- Lingnocellulosic bioethanol always in coproduction with by-products from lignin, e.g. power, heat,
- Type and amount of by-products influences technical, economic and environmental performance
- Commercial technology not available, technology under development, e.g. pilot plant for wood in Sweden, demo plant for straw in Denmark
- Priority to integration of lingnocellulosic bioethanol plant in existing infrastructure, e.g. from wood in P&P-industry, from straw in EtOH from wheat plant



# RESEARCH

#### Conclusions 2

- GHG-reduction between 41% and 76% possible
- Costs of lingnocellulosic bioethanol possible between 0,6 - 1 €/L gasoline equivalent
- Lingnocellulosic bioethanol in comparison to FT-fuels: similar range of costs and environmental effects
- Further R&D necessary, e.g. in Austrian demo plant

www.joanneum.a



#### Thank you for your attention!





JOANNEUM RESEARCH – RESOURCES Kurt Könighofer, Lorenza Canella, Gerfried Jungmeier www.joanneum.at/resources; Email: kurt.koenighofer@joanneum.at

Vienna University of Technology, Institute of Chemical Engineering, Thermal Process Engineering - Process Simulation Anton Friedl, Philipp Kravanja

www.thvt.at; Email: philipp.kravanja@tuwien.ac.at

www.joanneum.a