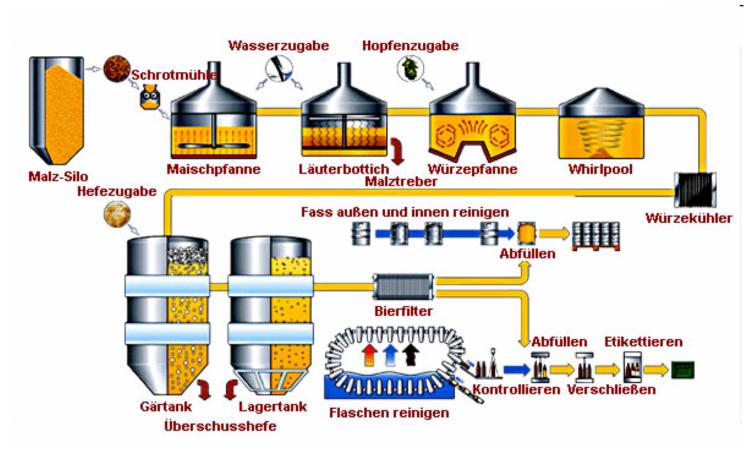


Energiegewinnung aus produktionsspezifischen Reststoffen in Brauereien

Brauerei


- Ausstoß in Österreich 9 Mio hl Bier/a
- Überwiegend mittelständische bis große Brauereien
- Brauprozess ist energieintensiver Prozess
- Wirtschaftlicher Situation angespannt
- Optimierungsmaßnahmen in vielen Brauereien im Gange
- Suche nach neuen Einsparungspotentialen in der gesamten Prozesskette

Brauprozess

www.klosterbrauerei-scheyern.de

Stoffströme

- Austrebern: Treber
- Whirlpool: Heißtrub
- Gärung: CO₂
- Lagerung: Überschusshefe
- Flaschenreinigung: Altetiketten

Organische Reststoffströme in Brauereien

Quelle: Pesta 2005

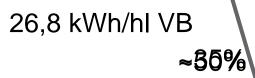
Reststoff	kg/hl VB
Malzstaub	0,05-0,25
Malztreber (20 % TS)	18,0-20,0
Heißtrub	0,4-2,0
Kühltrub	0,1-0,3
Geläger und Überschusshefe	2,0-2,6
Kieselgurschlamm	0,4-1,1
Papier/Etiketten	0,29
Abwasser	0,35-0,40 m ³ /hl VB

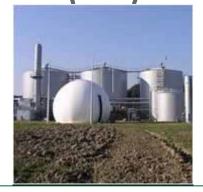
Biogaspotential der Reststoffe

Quelle: Pesta 2005

Substrat	Gasertrag [m³ Biogas/kg FM]	Gaspotential [m³ Biogas/a]
Treber	120	240.000
Malzstaub	600	9.000
Hefe	60	13.800
Abwasser	0,35	28.000

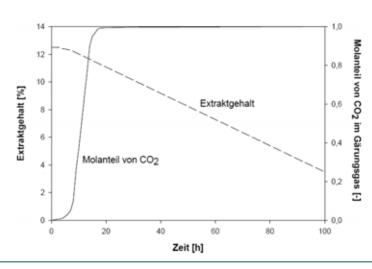
~250.000 – 300.000 m³ Biogas/a bzw. ~ 2 Mio. kWh/a bei einer 100.000 hl Brauerei


Substitution des Energiebedarfes einer Brauerei



9,9 kWh/hI VB ~70%

17,9 kWh/hl VB


CO₂ in Brauereien

- $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$
- Nach Bailling (1854): 1 kg Extrakt → 0,464 kg CO₂ bzw. aus 1 hl Kaltwürze 4,18 kg (3,8 kg CO₂ entweichen)
- CO₂-Konzentration abhängig von Gärungsverlauf
- Rückgewinnung ab einer Größe von 100.000 hl wirtschaftlich
- Kosten 15-40 €/t (+50 € Transport)
- Rückgewinnung 40-60 €/t

Quelle: Buchhauser 2010

CO₂-Bedarf in Brauereien

Eigenbedarf: 1,9-2,9 kg CO ₂ /hl
Verwendung für Ahfüllung von

- Verwendung für Abfüllung von AFG
- Einsatz in der Lebensmittelindustrie
- Einsatz als Kältemittel

Prozess	Menge an CO ₂ [kg/hl]
Lagertank	0,35 - 0,50
Kesselfilter	0,40 - 0,50
Drucktank	0,30 - 0,60
Flaschenfüller	0,18 - 0,40
Kegfüller	0,90 - 1,10
Dosenfüller	0,60 - 0,80
Nachkarbonisierung	0,10-0,20
Vollkarbonisierung	0,50-0,70
Tankwagen	0,30 - 0,50
Ausschank	0,20-0,50

Quelle: Buchhauser 2010

CO₂-Bedarf bei alkoholfreien Getränken

Nutzung bei der Abfüllung alkoholfreier Getränke

AFG-Produktion	
Flaschen (Wasser, Limonade)	0,60-0,70
Container (Wasser, Limonade)	1,20 - 1,40
Dosen (Limonade)	1,00 - 1,20

→ je hl Bier CO₂ für 1-2 hl AFG

Quelle: Buchhauser 2010

Resümee

- Energie ~ 2 Mio. GWh/a
- ~ 50 % Energiebedarf Brauerei

■ CO₂ 380 t

>100 % Deckung des Eigenbedarfs

Verkauf Hefe

Ertrag abhängig von Vertrag/Verwertung

100.000 hl Bier

~ 100.000 Personen

Vielen Dank für ihre Aufmerksamkeit

www.adswec2011.org

IEA Bioenergy Task 37

