

ÉcoTerra Home

Completion Date Winter 2008

Location

9. de la Héronnière

Eastman Quebec

Canada

Latitude Longitude North 45.3 N 72.3 W

Climate Challenge Definition

Buildings are either cooling dominated. heating dominated or mixed heating and cooling dominated. A building is climate dominated if one of a reference buildings space conditioning processes is 70% or reater of the total space conditioning

Climate Challenge

Heating Dominated

Building Type

Site Context

Open Site

Net Floor Area (m²)

230

Conditioned Floor Area (m2)

230

Occupancy (m² per Person)

0.01

Number of Storeys

Cost US\$/(Net) m² Floor Area

1,500

Cost US\$/(Net)m² typical similar building

1,000

For more information

http://www.cmhc-schl.gc.ca

Google earth

N/A

Net Zero Energy Building Overview

The EcoTerra house is a prefabricated detached house built in a wooded area in Eastman, Quebec. The house aims at fulfilling the objectives of the EQuilibrium initiative led by Canada's Housing and Mortgage Corporation (CMHC): to provide a healthy, affordable and comfortable living space, while reaching the goal of annual net-zero energy consumption.

This is one of thirty case study factsheets collected by participants in Subtask C of the IEA 'Net Zero Energy Buildings' (NZEBs) research project. Subtask C focuses on documenting and analysing current NZEBs design and technologies. The case studies form the basis of a proposed Source Book describing NZEB Solution Sets and quidelines and documenting monitored performance and lessons learned.

Architectural Design Concept

The house is oriented due south. The footprint is roughly a rectangle with an aspect ratio of about 1.4. The south façade of the house (and hence the roof as well) is longer to receive more direct solar radiation. A family room with large glazing area is located in the south portion of the ground floor. It is the main direct gain zone for passive solar heating. A skylight window with an area of about 1 square meter located above the stairways brings in daylight for the kitchen and dining area. All rooms are equipped with windows except the north portion of the basement, where the mechanical room is located. Large south facing windows and open space architectural layout help improving daylight distribution. The length of the overhangs (e.g. soffit) over the south facing windows was optimized to block most of the direct solar radiation in the summer, but to allow the window to be fully exposed to direct solar radiation in the winter. All the windows are operable. This

enables cross ventilation for passive free cooling. Measured Energy Production and Consumption:

These data compare the overall energy consumption with the total energy generated though renewable energy onsite.

Energy Demand (kWh/m2.year)

Natural Gas Electricity

56.03 Final: Primary: 84.05

Energy Supply (kWh/m².year)

Renewable Energy 119 87 Primary: 179.80

Source to Site Conversion Factor (Electricity):

In the graph **Final Energy Demand** is the sum of all delivered energy (kWk/m².year) obtained by summing all energy carriers. Final **Energy Supply** is the sum of all energy generated on site from renewable sources. The Primary Energy Demand and Primary Energy Credit have been calculated based upon the Primary Energy Conversion Factors for each energy carrier for this location.

EnergyPlus Model

This model has been created by the STC participants to assist in the standardised analysis of the performance of this building. It calculates internal temperatures and energy consumption and production.

Key to colours:

Blue = Outside (sun and wind exposed) Yellow = Ground (floors and basement walls)

Purple = Building shading

Grey = Site shading (ground surfaces)

The icons at the end of each section provide a visual key for the reader who wants to quickly organize all the case studies. They symbolically summarize the individual technology solution sets used in each

building. Please see the key to the right for more

L - Lighting

E - Energy Export

V - Ventilation C - Cooling

Climate Analysis

The building climate method uses a reference residential building built to the local building code minimum insulation requirements to test the interaction between a building built in a location and the external climatic conditions in that location.

The Climate Challenge for the building designer is HEATING DOMINATED (HD) if the green bars meet between 70 and 100%; it is COOLING DOMINATED (CD) if they meet between 0 and 30%; it is MIXED HEATING

AND COOLING (HCD) if they meet between 30 and 70% P - Plug Load W - Water Heating

Passive design techniques or solutions are design measures that require no direct purchased energy input. These design measures include optimisation of solar energy collection, storage and shading, plus natural ventilation and advanced day lighting measures. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of passive measures for this climate did not need to include this particular measure.

U-value (W/K)

Heat Flow %

Construction

Walls - Construction Elements

Facing Solar Noon
U-value (W/m² ºC) 0.16

Solar Absorptivity 0.70

Wood siding, BASF Walltite, Neopor and Enertite insulation

East

U-value (W/m² ºC) 0.16 Solar Absorptivity 0.70

Wood siding, BASF Walltite, Neopor and Enertite insulation

Facing Polar Direction

U-value (W/m² ºC) 0.16 Solar Absorptivity 0.70

Wood siding, BASF Walltite, Neopor and Enertite insulation

West

U-value (W/m² ºC) 0.16 Solar Absorptivity 0.70

Wood siding, BASF Walltite, Neopor and Enertite insulation

Roofs

U-value (W/m² ºC) 0.16 Solar Absorptivity 0.80

Cathedral ceiling and attic type of roof

Ground floor

U-value (W/m² ºC) 0.68

Floor is below-grade

Windows - Construction Elements

Solar Noon U-value (W/m² ºC)

U-value (W/m² ºC) 1.18 g-value 0.53

Argon-filled, triple-glazed, low-e coating

East

U-value (W/m² ºC) 1.176 g-value 0.532

Argon-filled, triple-glazed, low-e coating

Polar Direction

U-value (W/m² ºC) 1.18 g-value 0.53

Argon-filled, triple-glazed, low-e coating

West

U-value (W/m² ºC) 1.18 g-value 0.53

Argon-filled, triple-glazed, low-e coating

As Buil

Air permeability is the total building air leakage (m^3 . h^{-1}) per m^2 of building envelope at a reference pressure difference of 50 Pa.

1.611158192

Compactness (m-1)

0.53

Heat Flow (W/ºC)

Wall

High resistance to heat flow (high R-value, low U-value) is important in climate where energy using services are used to maintain a large temperatures difference between indoors and outdoors.

Solution Sets are: A set of passive, energy efficiency, and/or renewable energy solutions used to mitigate or lessen the building challenges and achieve the design qoal.

Building Challenge Solution Set - The set of solutions used to lower the energy needed by a particular building challenge.

Whole Building Solution Set - The set of solutions used to lower the energy consumption of the whole building.

<u>Heating</u>

Thermal Mass

0.16

A concrete floor and half-wall in the south facing zone store solar energy passively.

Cooling Sunshading

There are overhangs over the south facing windows that block most of the direct solar radiation in the summer season.

Thermal Mass

The hollow-core concrete slab of the basement is actively charged with the thermal energy coming from the BIPV/T roof, but discharges its energy passively.

Natural Ventilation

Passive cooling is promoted with all the windows being operable to allow cross ventilation.

Heat Recovery

There is a drain water heat recovery system to recover part of the heat of the water coming down the shower drain.

Daylight Systems

Skylight and south-facing windows

A skylight window located above the stairways brings in daylight for the kitchen and dining area. All rooms are equipped with windows except the north portion of the basement where the mechanical room is located. Large south facing windows and open space architectural layout help to improve daylight distribution.

Window Distribution Information

Distribution of Window Areas per Façade

In Passive design, the orientation of the windows and their size has an extreme effect on the heating, cooling and the daylight harvesting potential of the building. This graph enables simple comparison of these properties for each climate and building type.

North Facade 80% 70% 60% 50% 40% 20% 30% 20% 80% South Façade

Façade Porosity - Percentage of Openings per Facade

In Passive Design, the orientation of the openings for Natural Ventilation is a response to the wind and the site. This graph enables a simple comparison of the porosity of each façade for each climate and building type.

Advanced Glazing

Energy efficient technologies are specific equipment and appliances that focus on reducing the use of energy, in the building, through more efficient means. These energy efficient technologies are used in harmony with the passive design to lower the overall energy consumption of the building. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular

System Design Parameters Innovative Technologies

The information below is organised under

neadings in the case study database

NZEB design solution set of energy

Where a field is blank it is because the building design team decided that the

efficient Systems for this climate did not

Energy Reduction Measures for Plug

Loads and Appliances

efficient

Energy Storage

Other

need to include this particular technology

Most plug loads and appliances are energy

The basement hollow-core slab stores the

heat from the BIPV/T roof preheated air

(heating season) and the coolness from

the night outdoor air (cooling season). Concrete floor and half-wall in the south

facing zone ensure passive storage of

The BIPV/T roof consists of amorphous

metal roof, with air passing under the metal to recover heat. This heat is used for both space or water heating

silicon PV laminates directly attached to a

Artificial Lighting Outside Air Requirements per Person (L/s-p)

Yes

Power Density Installed (W/m²): Unknown

Computer Network

Power Density Installed (W/m²): Unknown Appliances / Plug Loads Power Density Installed (W/m²): Datacentre? No

Internal Environmental Systems and Domestic Hot Water

This section describes how the design team has provided for the internal space conditioning. Central systems place the heating, cooling and ventilation equipment in a separate space from the occupied rooms. The heating or cooling of the rooms requires a distribution system taking heat to or away from the occupied rooms using water (hydronic) or air. Distributed systems have separate heating, cooling and possibly ventilation equipment installed for each space.

Cooling		Heating	
Central Plant	No	Central Plant	no
Distributed Plant	No	Distributed Plant	No
Openable Windows	See Passive Systems	Hydronic distribution	No
Ceiling Fans	Yes	Air distribution	Yes
Hydronic distribution	No		

Description

Air distribution

Cooling is achieved with a geothermal heat pump and pre-cooling of the hollow-core slab in the basement. There is also automatic control

Description

Heating is provided by the BIPV/T roof and a geothermal heat pump with back-up electrical element. The BIPV/T roof is coupled with a hollow-core ventilated concrete slab in the basement for space heating, an air-to-water heat exchanger for DHW and the clothes dryer.

Ventilation System		DHW - Domestic Hot Water	
Heat Recovery Type	Yes	Solar?	Yes
Central Air supply	Yes	Waste Water Heat Recovery?	Yes
Local Air Recirc plus Central Fresh Air	No	Gas?	Yes
•		Electrical?	No
		Other? (Less than 200 words:)	No

Description Description

The house has a heat recovery ventilator (HRV). DHW is supplied by the BIPV/T roof (through an air-to-water heat exchanger), the heat pump desuperheater, a drain water heat recovery unit and back-up electricity.

Artificial Lighting

Space heating is provided by geothermal heat pump and a BIPV/T roof. This BIPV/T system is coupled with a hollow-core ventilated concrete slab located in the basement and an air-to-water heat exchanger to provide domestic hot water.

The critical feature of a successful ultra low energy building is the user interaction. Without control systems that are responsive to user needs and easily understood successful operation is extremely difficult.

Lighting HVAC Description Description

The user interface is located a the entrance. The heating/cooling schedules and setpoints can be adjusted by the user.

Computer Management

Energy Storage User Interactions Latent Storage? Nο User Manual Provided? No Fuel Cell? Nο Compressed Air? No Description

Control of Systems

BACNet protocol is used to manage the BIPV/T collector, exterior motorized awnings and heat pump.

A commercial system based on the

dvanced Lightin

Control Systems

system energy production.

There is a user interface in the house to indicate weather and the PV

Engineer Civil

Concordia University (Andreas Athienitis)

1455 Maisonneuve W. H3G 1M8

email

athiena@alcor.concordia.ca

Web Address

ww.bcee/index.php/Dr._A._Athienitis.htm

Engineer MEP Name

Address

Engineer Structural

Address

mail

Web Address

Architect

Name

Masa Noguchi Address

Fmail

m.noguchi@gsa.ac.uk

Web Address

Builder/Contractor

Maison Alouette

Address

Email

Web Address

http://www.maisonalouette.com

Source and Type of Funding

The house was built by Alouette Homes with support from the Canadian Solar Buildings Research Network, Canada's Mortgage and Housing Corporation (CMHC), Natural Resources Canada

Principal Actors

This house was developed by Alouette Homes and a Concordia University team as part of Canada's Mortgage and Housing Corporation (CMHC) EQuilibrium initiative.

Author

Contact

Véronique Delisle

Veronique.Delisle@nrcan-rncan.gc.ca

This project has been organised under the framework of two International Energy Agency implementing agreements: Solar Heating and Cooling and Energy Conservation in Buildings and Community Systems. For more information please visit: www.iea-shc.org/task40

Energy Supply and Integration of Renewable Energy:

"By definition, a renewable energy source is a fuel source that can be replenished in a short amount of time. (American Society Of Heating, Refridgerating and Air-Conditioning Engineers, 2006)" Through the use of these replenishing energy sources, the annual energy demand of an already low-energy building can be offset through the renewable energy generation. Renewable energy sources are converted to energy using renewable energy generation technologies or solutions. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy supply and integration of renewable energy for this climate did not need to include this particular measure.

Electricity Production

Photovoltaic (PV) **Building Integrated PV?** YES **Ground mounted** NO Roof mounted YES Position Fixed Tilt (angle) 30 Azimuth 0

Technology Amorphous silicone

Nominal Power (kWp) 2.9 45 Area (m²) Yield (kWh/m².year) 43 Expected generation (kWh)

Measured generation (kWh)

Solar Water Heating

Hot Water **Solar Thermal**

Technology Heat recovery from BIPV Position 30 deg Tilt, 0 deg azimuth

Area (m2) 45 Production (kWh/m2.vear) n/a Annual % of Hot Water n/a

Production of Heating and Cooling

Heating Equipment

Technology	Others BIPV/T air
Power	n/a
Efficiency (%)	n/a
Production (kWh/m ² .yr)	328.9
Annual % of Heating	n/a

Ground / Water Source Heat Pump

Two-stage

10.5 kW

COP of 4.2 at full load

2530.0

Cooling Equipment

Heat Pump

Technology Ground-source, two-stage

11.1 kW

Efficiency (%) ER of 19.8 at full load

Production (kWh/m².year) 115 Annual % of Cooling n/a

This graph shows the expected proportion of generation (kWh/m^2) of energy produced by the various renewable energy sources based on design calculations.

Cooling energy production

 Energy produced from Photovoltaic Panels ■ Energy produced from on site Wind Turbines

Hybrid energy production

References

American Society of Heating, Refridgerating and Air-Conditioning Engineers. Ashrae Green Guide: The Design, Construction, and Operating of Sustainable Buildings USA: Elsevier 2006. Belleri, Annamaria, Assunta Napolitano, and Roberto Lollini. "Net Zeb Evaluation Tool - User Guide " (2012).

ENERPOS

Completion Date

Construction completed August 2008

Location

40 avenue de Soweto Saint-Pierre Reunion Island

France

Latitude Longitude South West 21° 20' 55° 29'

Climate Challenge Definition

Buildings are either cooling dominated, heating dominated or mixed heating and cooling dominated. A building is climate dominated if one of a reference buildings space conditioning processes is 70% or greater of the total space conditioning load.

Climate Challenge

Cooling Dominated

Building Type

Non-residential Educational

Site Context

Suburban Site - single family houses 1-2 storey spaced 3-5m apart

Net Floor Area (m²)

739

Conditioned Floor Area (m²) 681

Occupancy (m² per Person)

Number of Storevs

Cost US\$/(Net) m2 Floor Area

4,581

Cost US\$/(Net) m² typical similar building

Net Zero Energy Building Overview

ENERPOS is the first Net ZEB of the French overseas departments in tropical climates. The building has been designed with priority given to the passive components such as cross natural ventilation and solar shading. In terms of energy use, it consumes one seventh of the average for university buildings in Reunion Island and produces seven times its consumption by BIPV roofs. The building has a high level of monitoring with min by min data separated by end use.

This is one of thirty case study factsheets collected by participants in Subtask C of the IEA 'Net Zero Energy Buildings' (NZEBs) research project. Subtask C focuses on documenting and analysing current NZEBs design and technologies. The case studies form the basis of a proposed Source Book describing NZEB Solution Sets and guidelines and documenting monitored performance and lessons learned.

Architectural Design Concept

Passive techniques: Cross natural ventilation (2 building wings orientated to be exposed to the summer thermal breezes), native plants around the building

Solar shading of all windows and walls Insulation of the roof (+ BIPV over-roof)

Measured Energy Production and Consumption:

These data compare the overall energy consumption with the total energy generated though renewable energy onsite.

Energy Demand (kWh/m2.year)

Electricity

11602 Final: Primary: 38288

Energy Supply (kWh/m².year)

Renewable Energy

Final: 115 Primary: 380

Source to Site Conversion Factor (Electricity): 3.3

In the graph **Final Energy Demand** is the sum of all delivered energy (kWk/m².year) obtained by summing all energy carriers. Final Energy Supply is the sum of all energy generated on site from renewable sources. The Primary Energy Demand and Primary Energy Credit have been calculated based upon the Primary Energy Conversion Factors for each energy carrier for this location.

250 225 year) 200 (kWh/m² 175 150 125 Supply 100 75 Energy 50 25 25 20 100 125 150 175 200 225 250 Energy Demand (kWh/m².year) ■ Energy Generated/Energy Consumed - Primary Energy Generated/Energy Consumed - Final

EnergyPlus Model

This model has been created by the STC participants to assist in the standardised analysis of the performance of this building. It calculates internal temperatures and energy consumption and production.

Blue = Outside (sun and wind exposed)

Yellow = Ground (floors and basement walls)

Purple = Building shading

Grey = Site shading (ground surfaces)

Climate Analysis

The building climate method uses a reference non-residential building built to the local building code minimum insulation requirements to test the interaction between a building built in a location and the external climatic conditions in that location

(HD) if the green bars meet between 70 and 100%; it is COOLING DOMINATED (CD) if they meet between 0 and 30%; it is MIXED HEATING AND COOLING (HCD) if they meet between 30 and 70%.

Web Address

http://lpbs.univ-reunion.fr/enerpos

For more information:

http://tinyurl.com/Enerpos-FR-RE

The icons at the end of each section provide a visual the case studies. They symbolically summarize the individual technology solution sets used in each building. Please see the key to the right for more

P - Plug Load **W** - Water Heating

V - Ventilation C - Cooling

E - Energy Export

Passive design techniques or solutions are design measures that require no direct purchased energy input. These design measures include optimisation of solar energy collection, storage and shading, plus natural ventilation and advanced day lighting measures. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of passive measures for this climate did not need to include this particular measure.

Construction

Walls - Construction Elements

Facing Solar Noon

U-value (W/m² ºC) Solar Absorptivity 0.40

Concrete (20 cm) + Solar shading

U-value (W/m² ºC) 0.90 Solar Absorptivity 0.40

Concrete (20 cm) + Insulation (... cm of mineral wool) + Wooden siding

Facing Polar Direction

U-value (W/m² ºC) 3.79 Solar Absorptivity 0.40

Concrete (20 cm) + Solar shading

West

U-value (W/m² ºC) 0.90 Solar Absorptivity

Concrete (20 cm) + Insulation (... cm of mineral wool) + Wooden siding

U-value (W/m² °C) 0.27 Solar Absorptivity 0.80

Concrete + Insulation (10 cm of polystyrene) + BIPV over-roof

Ground floor

U-value (W/m2 ºC) 1.08

Windows - Construction Elements

Solar noon

U-value (W/m² ºC) 5.90 g-value

Saint-Gobain SGG STADIP Clear

U-value (W/m² ºC) g-value

Polar direction

U-value (W/m² °C) 5.90 g-value

Saint-Gobain SGG STADIP Clear

West

U-value (W/m² ºC) g-value

Air permeability (m³/m²h@50pa) Air permeability is the total building air leakage (m3.h-1) per m2 of building envelope at a reference pressure difference of 50 Pa.

As Built

Compactness (m-1)

Heat Flow (W/ºC)

High resistance to heat flow (high Rvalue, low U-value) is important in climate where energy using services are used to maintain a large temperatures difference between indoors and outdoors.

Heating

Solution Sets are: A set of passive, energy efficiency, and/or renewable energy solutions used to mitigate or lessen the building challenges and achieve the design

Building Challenge Solution Set - The set of solutions used to lower the energy needed by a particular building challenge.

Whole Building Solution Set - The set of solutions used to lower the energy consumption of the whole buildina.

Cooling

Natural Ventilation

Porosity of main facade: 30% (PERENE requirement: 20%), louvers

Green Roof/Façade

Vegetalisation of the facade to avoid overheat of entering air, vegetalised patio on top of an underground parking, use of native plants to avoid plant care

Sunshading

Main facades (North and South) are solar protected with wooden strips that were sized with SketchUp and optimized with daylight simulation (Davsim)

Daylight Systems

High value of porosity combined with solar shadings

Daylight autonomy in classrooms in about 90%

Window Distribution Information

Distribution of Window Areas per Façade

In Passive design, the orientation of the windows and their size has an extreme effect on the heating, cooling and the daylight harvesting potential of the building. This graph enables simple comparison of these properties for each climate and building type.

Façade Porosity - Percentage of Openings per Façade

In Passive Design, the orientation of the openings for Natural Ventilation is a response to the wind and the site. This graph enables a simple comparison of the porosity of each façade for each climate and building type.

Thermal Zoning

Advanced Glazing

atural Ventilatio AIR

Energy efficient technologies are specific equipment and appliances that focus on reducing the use of energy, in the building, through more efficient means. These energy efficient technologies are used in harmony with the passive design to lower the overall energy consumption of the building. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular system.

Innovative Technologies

The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular technology

Energy Reduction Measures for Plug Loads and Appliances

eg. Elevator : reduction of half the consumption with stand-by mode on (thanks to the measured data)

Energy Storage

Other

Ceiling fans in all rooms and offices (1/10m²)

System Design Parameters

Outside Air Requirements per Person (L/s-p) **Artificial Lighting**

3.7 W/m² Power Density Installed (W/m²):

Computer Network

DHW - Domestic Hot Water

Solar?

Description

No

Appliances / Plug Loads 1.45374449 Power Density Installed (W/m²): Power Density Installed (W/m²): 16

Datacentre?

Internal Environmental Systems and Domestic Hot Water

This section describes how the design team has provided for the internal space conditioning. Central systems place the heating, cooling and ventilation equipment in a separate space from the occupied rooms. The heating or cooling of the rooms requires a distribution system taking heat to or away from the occupied rooms using water (hydronic) or air. Distributed systems have separate heating, cooling and possibly ventilation equipment installed for each space.

Cooling **Heating**

Yes Central Plant Yes **Central Plant Distributed Plant** No **Distributed Plant** No **Openable Windows** See Passive Systems Hydronic distribution No Yes Ceilina Fans Air distribution No Hydronic distribution No

Description Description

Yes

VRV air-conditioning (only for offices & computer rooms) - cooling period: 6 weeks/v

Ventilation System

Description

Air distribution

No Heat Recovery Type

Central Air supply Yes Waste Water Heat Recovery?

Local Air Recirc plus Central Fresh Air Yes Gas? Electrical? Other?

HVAC Systems

VRV system for AC + split systems in the technical rooms

Artificial Lighting

Offices: mood lighting (100 Lux) + LED desk lamps (>300 Lux on the work area) 3,7 W/m²

Classrooms: 7,3 W/m²

Computer Management

Theory: computers delocalized in a technical room - not realized yet

Control of Systems

Building Management System

Control Systems

The critical feature of a successful ultra low energy building is the user interaction. Without control systems that are responsive to user needs and easily understood successful operation is extremely difficult.

Lighting

BMS for exterior lighting (timetable) + 2 hours timers for interior lighting in the classrooms.

HVAC

BMS: timetable, individual control in each offices of the set temperature

Energy Storage User Interactions

Latent Storage? Fuel Cell? Compressed Air?

User Manual Provided?

ves

Users can control the ciling fans (nearly one ceiling fan/ pers in the offices) and all windows are openable manually. The lighting is also manual except for the classrooms where there is a 2 hours timer in case the users forget to turn off the lights. The VRV system functions on timetable.

Heat Recovery

Enaineer Civil

Name

INSET

8 rue Henri Cornu BP 12005, 97801 Saint Denis, FRANCE

Email

eric.ottenwelter@inset.fr

Web Address

http://www.inset.fr/

Engineer MEP

Name RTI

Address

Email

Web Address

Engineer Structural

Name

Address

Web Address

Architect Name

Atelier FAESSEL BOEHE

Address

18 CD4 - SAVANNAH, 97460 SAINT-PAUL, France

Fmail

atelier.fb@wanadoo.fr

Web Address

Builder/Contractor

Name

LEON GROSSE

Address

r Guadeloupe, 97490 SAINT DENIS, France

Email

Web Address

Funding

Source and Type of Funding

General council of La Reunion (4M€): City of Saint Pierre (800 000€; land contribution); Regional council of La Reunion

University of La Reunion (client); Thermal Engineer Office

François Garde / Aurélie Lenoir

garde@univ-reunion.fr / aurelie.lenoir@univ-reunion.fr

This project has been organised under the framework of two International Energy Agency implementing agreements: Solar Heating and Cooling and Energy Conservation in Buildings and References Community Systems. For more information please visit: www.ieashc.org/task40

Energy Supply and Integration of Renewable Energy:

"By definition, a renewable energy source is a fuel source that can be replenished in a short amount of time. (American Society Of Heating, Refridgerating and Air-Conditioning Engineers, 2006)" Through the use of these replenishing energy sources, the annual energy demand of an already low-energy building can be offset through the renewable energy generation. Renewable energy sources are converted to energy using renewable energy generation technologies or solutions. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy supply and integration of renewable energy for this climate did not need to include this particular measure.

Electricity Production

Photovoltaic (PV) Yes **Wind Turbine Building Integrated PV?** The PV panels are integrated Position **Ground mounted Number of Turbine Roof mounted** yes Technology Position Nominal Power (kWp) Fixed

Tilt (angle) 9° Energy Production (kWh/m².year)

PV1: -166° North / PV2: 14° North Azimuth

Technology Polycristalline cells

Nominal Power (kWp)

Area (m²) $PV1: 219 \text{ m}^2 / PV2: 146 \text{ m}^2 >> total: 365 \text{m}^2$

Yield (kWh/m².year) Expected generation (kWh) 77000.00 Measured generation (kWh) 50000.00

Solar Water Heating

Hot Water Solar Thermal Technology **Position** Area (m2)

Production (kWh/m².vear) Annual % of Hot Water

Combined (Cooling) Heat and Power

Combined (Cooling) Heat and Power

Type Fuel Efficiency (%) Electricity **Water Heating Space Heating** Cooling

Production (kWh/m².year)

Flectricity Water Heating **Space Heating** Cooling

Renewable Production of Heating and Cooling

There is no active heating system installed in the building. **Heating Equipment**

Technology

Power

Efficiency (%)

Production (kWh/m².yr)

Annual % of Heating

Cooling Equipment There is no active cooling system installed in the building.

Technology

Power Efficiency (%)

Production (kWh/m².year) Annual % of Cooling

This graph shows the expected proportion of generation (kWh/m²) of energy produced by the various renewable energy sources based on design calculations.

American Society of Heating, Refridgerating and Ait-Conditioning Engineers. Ashrae Green Guide: The Design, Construction, and Operating of Sustainable Buildings USA: Elsevier 2006. Belleri, Annamaria, Assunta Napolitano, and Roberto Lollini, "Net Zeb Evaluation Tool - User Guide" (2012).

Kleehäuser

Completion Date

Jun-05

Location

Paul-Klee Str. 6 79100 Freiburg Baden-Württemberg

Latitude Longitude North West 47°58'36.47" 7°49'18.93"

Climate Challenge Definition

Buildings are either cooling dominated. heating dominated or mixed heating and cooling dominated. A building is climate dominated if one of a reference buildings space conditioning processes is 70% or reater of the total space conditioning load.

Climate Challenge

Heating & Cooling Dominated

Building Type

Site Context

Suburban Site - single family houses 1-2 storey spaced 3-5m apart

Net Floor Area (m²) 2520

Conditioned Floor Area (m2) 2520

Occupancy (m² per Person) 0.029761905

Number of Storeys

3 and 5

Cost US\$/(Net) m² Floor Area

1,923

Cost US\$/(Net) m² typical similar building

Net Zero Energy Building Overview

Passive house with very low heat demand following the idea of the 2000 Watt society. Intensive use of differnet renewables energy sources and CHP

This is one of thirty case study factsheets collected by participants in Subtask C of the IEA 'Net Zero Energy Buildings' (NZEBs) research project. Subtask C focuses on documenting and analysing current NZEBs design and technologies. The case studies form the basis of a proposed Source Book describing NZEB Solution Sets and quidelines and documenting monitored performance and lessons learned.

Architectural Design Concept

The two buildings have a very compact structure to lower the heated volume. Hence the stairs are outside of this volume (acces balconies). The surface is very good insulated and triple glazed windows are used. The passive solar design is supported by an assymetric window arrangement. Extensively glazed facades facing south optimise passive solar energy gains in winter. Cantilevered balconies oriented towards the south and extending up to two meters provide shade and prevent overheating in summer. The remaining facades feature a smaller degree of window surfaces. The layout follows the same principle: living spaces are generally oriented towards the south and other areas are on the northern side of the buildings.

Measured Energy Production and Consumption:

These data compare the overall energy consumption with the total energy generated though renewable energy onsite.

Energy Demand (kWh/m².year)

LICCUITICITY		ivaturar Gas
Final:	26.73	75.25
Primary:	69.50	82.775

Energy Supply (kWh/m².year) Renewable Energy

56 94 Primary: 148.04

Source to Site Conversion Factor (Electricity):

In the graph **Final Energy Demand** is the sum of all delivered energy (kWk/m².year) obtained by summing all energy carriers. Final **Energy Supply** is the sum of all energy generated on site from renewable sources. The Primary Energy Demand and Primary Energy Credit have been calculated based upon the Primary Energy Conversion Factors for each energy carrier for this location.

EnergyPlus Model

This model has been created by the STC participants to assist in the standardised analysis of the performance of this building. It calculates internal temperatures and energy consumption and production.

Key to colours:

Blue = Outside (sun and wind exposed) Yellow = Ground (floors and basement walls)

Purple = Building shading

Grey = Site shading (ground surfaces)

Climate Analysis

The building climate method uses a reference residential building built to the local building code minimum insulation requirements to test the interaction between a building built in a location and the external climatic conditions in that location.

The Climate Challenge for the building designer is HEATING DOMINATED (HD) if the green bars meet between 70 and 100%; it is COOLING DOMINATED (CD) if they meet between 0 and 30%; it is MIXED HEATING AND COOLING (HCD) if they meet between 30 and 70%

For more information

Google earth

http://tinyurl.com/Kleehauser

The icons at the end of each section provide a visual key for the reader who wants to quickly organize all the case studies. They symbolically summarize the individual technology solution sets used in each building. Please see the key to the right for more

H - Heating

P - Plug Load L - Lighting W - Water Heating V - Ventilation E - Energy Export

C - Cooling

Passive design techniques or solutions are design measures that require no direct purchased energy input. These design measures include optimisation of solar energy collection, storage and shading, plus natural ventilation and advanced day lighting measures. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of passive measures for this climate did not need to include this particular measure.

U-value (W/K)

Heat Flow %

Construction

Walls - Construction Elements
Facing Solar Noon

U-value (W/m² ºC) 0.17 Solar Absorptivity

On the balcony and porch fronts white fiber cement panels alternate with triple-glazed timber frame windows.

East

U-value (W/m² ºC) 0.17 Solar Absorptivity

Externally reinforced concrete walls or infilled wood stud walls insulated with 30 cm mineral wool. Wood planks or untreated steel plates dress the gables.

Facing Polar Direction

U-value (W/m² ºC) 0.17 Solar Absorptivity

On the balcony and porch fronts white fiber cement panels alternate with triple-glazed timber frame windows.

West

U-value (W/m² ºC) 0.17 Solar Absorptivity

Externally reinforced concrete walls or infilled wood stud walls insulated with 30 cm mineral wool. Wood planks or untreated steel plates dress the gables.

Roofs

U-value (W/m² ºC) 0.11 Solar Absorptivity

Reinforced concrete of flat roof is insulated with 30 cm of expanded polystyrene (EPS).

Ground floor

U-value (W/m² ºC) 0.18

Thermal envelope of basement is insulated with rigid foam boards.

Windows - Construction Elements

Solar noon

U-value (W/m² ºC) 0.98 g-value 0.60

triple glazed windwows

East

U-value (W/m² ºC) 0.98 g-value 0.6

triple glazed windwows

Polar direction

U-value (W/m² ºC) 0.98 g-value 0.60

triple glazed windwows

West

U-value (W/m² ºC) 0.98 g-value 0.60

triple glazed windwows

As Built

Air permeability is the total building air leakage (m^3 . h^{-1}) per m^2 of building envelope at a reference pressure difference of 50 Pa.

0.6

Compactness (m-1)

0.38

Heat Flow (W/ºC)

High resistance to heat flow (high Rvalue, low U-value) is important in climate where energy using services are used to maintain a large temperatures difference between indoors and

13%

Solution Sets are: A set of passive, energy efficiency, and/or renewable energy solutions used to mitigate or lessen the building challenges and achieve the design goal.

Building Challenge Solution Set - The set of solutions used to lower the energy needed by a particular building challenge.

Whole Building Solution Set - The set of solutions used to lower the energy consumption of the whole building.

<u>Heating</u>

Thermal Mass

In some apartments loam buffers moisture

0.180

Cooling Sunshadina

South facades are solar protected with balconies and/or blinds

Heat Recovery

Individually controlled air by the ventialtion system ensures a comfortable indoor climate. Directly at each apartment entrance door is a switch that can be used to regulate the air flow individually and in three stages (85%)

An improved thermal insulation standard of the distribution pipelines of the ventilation system reduces heat losses

Natural Ventilation

Normal option to open the windows

Daylight Systems

Windows

High value of porosity combined with solar shadings

Window Distribution Information

Distribution of Window Areas per Façade

In Passive design, the orientation of the windows and their size has an extreme effect on the heating, cooling and the daylight harvesting potential of the building. This graph enables simple comparison of these properties for each climate and building type.

Façade Porosity - Percentage of Openings per Facade

In Passive Design, the orientation of the openings for Natural Ventilation is a response to the wind and the site. This graph enables a simple comparison of the porosity of each façade for each climate and building type.

Energy efficient technologies are specific equipment and appliances that focus on reducing the use of energy, in the building, through more efficient means. These energy efficient technologies are used in harmony with the passive design to lower the overall energy consumption of the building. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular

Innovative Technologies

The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular technology

Energy Reduction Measures for Plug Loads and Appliances

Partly efficient appliances, efficient elevator, switcher for the ventilation system in each appartment

Energy Storage

Thermal buffer storage (3900 I)

Other

Common used refrigerators and washing mashines with hot water tab in cellar rooms

System Design Parameters

Artificial Lighting Outside Air Requirements per Person (L/s-p)

Power Density Installed (W/m²): Unknown Indoor air changed 1/2 per hour

Computer Network

Power Density Installed (W/m²): Unknown Appliances / Plug Loads Power Density Installed (W/m²): No information available Datacentre? No

Internal Environmental Systems and Domestic Hot Water

This section describes how the design team has provided for the internal space conditioning. Central systems place the heating, cooling and ventilation equipment in a separate space from the occupied rooms. The heating or cooling of the rooms requires a distribution system taking heat to or away from the occupied rooms using water (hydronic) or air. Distributed systems have separate heating, cooling and possibly ventilation equipment installed for each space.

Cooling		<u>Heating</u>	
Central Plant	No	Central Plant	Yes
Distributed Plant	No	Distributed Plant	No
Openable Windows	Yes	Hydronic distribution	No
Ceiling Fans	No	Air distribution	No
Hydronic distribution	No		

Description Description

Nο

No cooling plant A natural gas-powered cogeneration plant (capacity 14 kWel / 30 kWth) generates electricity for the own small electricity grid and covers the heat demand of the two houses. 61.2 m² of flat plate collectors feed heat into a small heat grid between the two houses. A solar heat storage has a total volume of 3900 liters.

Ventilation System		DHW - Domestic Hot Water	
Heat Recovery Type	Yes	Solar?	Yes
Central Air supply	Yes	Waste Water Heat Recovery?	No
Local Air Recirc plus Central Fresh Air	Yes	Gas?	No
		Electrical?	Yes
		Other?	Yes

Description Description

Ventilation with 85% heat recovery Solar thermal system and a CHPP

HVAC Systems

small scale CHP

Artificial Lighting

Control Systems

Air distribution

The critical feature of a successful ultra low energy building is the user interaction. Without control systems that are responsive to user needs and easily understood successful operation is extremely difficult.

LEDs and very efficient light bulbs

Description

no information available because of residential use HVAC is controlled by normal systems(related to the CHPP). By a switch in each apartment the air flow can be adjusted (to conserve

HVAC

Description

moisture when absent)

Computer Management

Energy Storage User Interactions Latent Storage? Nο User Manual Provided? yes Fuel Cell? Nο Compressed Air? No Description

Control of Systems

Building Management System

dvanced Lightin

Earth Tube Heat

User related by efficient appliances

Radiant Structure

Engineer Civil

Solares Bauen, Freiburg

Emmy-Noether-Str.2, 79110 Freiburg

mail

info@solares-bauen.de

Web Address

ww.solares-bauen.de

Engineer MEP

Name

solares bauen, Freiburg, Address

Emmy-Noether-Str.2, 79110 Freiburg

info@solares-bauen.de Web Address

www.solares-bauen.de

Engineer Structural

Address

mail

Web Address

Architect

Common & Gies Architekten, Freiburg

Kronenstrasse 33, 79100 Freiburg

Fmail

info@commonarchitekten.de

Web Address

www.commonarchitekten.de

Builder/Contractor

assembly Group Baugruppe Kleehäuser

Address

Paul-Klee Str. 6, 79100 Freiburg

Email

post@kleehaeuser.de Web Address www.kleehaeuser.de/

Source and Type of Funding

The two buildings were built by a assembly and hence funded completly private.

Principal Actors

Main actor was a building assembly. Engineers forced the project to a zeroHaus certificate (consumptions are equalized by renewables)

Author

Contact

Fike Musall

emusall@uni-wuppertal.de

This project has been organised under the framework of two International Energy Agency implementing agreements: Solar Heating and Cooling and Energy Conservation in Buildings and Community Systems. For more information please visit: www.iea-shc.org/task40

Energy Supply and Integration of Renewable Energy:

"By definition, a renewable energy source is a fuel source that can be replenished in a short amount of time. (American Society Of Heating, Refridgerating and Air-Conditioning Engineers, 2006)" Through the use of these replenishing energy sources, the annual energy demand of an already low-energy building can be offset through the renewable energy generation. Renewable energy sources are converted to energy using renewable energy generation technologies or solutions. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy supply and integration of renewable energy for this climate did not need to include this particular measure.

0

Electricity Production

Photovoltaic (PV) Yes **Building Integrated PV?** No Off-site Ground mounted No one ??? Roof mounted Yes 6300 kW Position Fixed Tilt (angle) 30° 26.52 0° South Azimuth

Technology Polycrstalline cells Nominal Power (kWp)

23 kWp 202 m² Area (m²) Yield (kWh/m².year) 43 Expected generation (kWh) 23000 Measured generation (kWh) 22529

Solar Water Heating

Hot Water **Solar Thermal**

Technology flat plate collectors Position on the roof Area (m2) 56.4 Production (kWh/m2.vear) efficiency measure

Annual % of Hot Water ca. 70 % natural gaspowered CHP Gas

ca. 90 % 0.3 0.3 0.3 0 21 21,48 kWh/m²y

71,51 kWh/m²y see above

0.3

Production of Heating and Cooling

Heating Equipment

Others

Technology natural gaspowered CHP

Power capacity 14 kWel / heat output 30 kWth

Efficiency (%) ca. 90 % Production (kWh/m2.yr) 7151.0

Annual % of Heating 0 % because ist natural gas

Cooling Equipment There is no active cooling system installed in the building.

Technology

Efficiency (%) Production (kWh/m².year) **Annual % of Cooling**

This graph shows the expected proportion of generation (kWh/m^2) of energy produced by the various renewable energy sources based on design calculations.

Turbine

Boiler

CHF CHP

Space Heating

System

V/Thermal Arra

References

American Society of Heating, Refridgerating and Air-Conditioning Engineers. Ashrae Green Guide: The Design, Construction, and Operating of Sustainable Buildings USA: Elsevier 2006. Belleri, Annamaria, Assunta Napolitano, and Roberto Lollini. "Net Zeb Evaluation Tool - User Guide " (2012).

Leaf House

Completion Date

Jun-05

Location

Petrarca (via F. Petrarca)

Rosora Ancona Italy

Latitude Longitude North West 43° 28' 43" N 13° 04' 03" E

Climate Challenge Definition

Buildings are either cooling dominated. heating dominated or mixed heating and cooling dominated. A building is climate dominated if one of a reference buildings space conditioning processes is 70% or reater of the total space conditioning load.

Climate Challenge

Heating & Cooling Dominated

Building Type

Site Context

Village, Urban Edge - 2-5 storey buildings with at most narrow lanes betwee adjacent buildings and street widths of 20

Net Floor Area (m²)

477

Conditioned Floor Area (m2)

477

Occupancy (m² per Person)

0.025

Number of Storeys

Cost US\$/(Net) m² Floor Area 943,600

Cost US\$/(Net) m² typical similar building

704,200

Net Zero Energy Building Overview

The Leaf House inspiration is the Italian rural house an autonomous and sustainable microcosm where every resource was exploited and nothing wasted. Its main features are: North South orientation, high thermal mass boundary walls, and glazed surfaces on the South facade. Transforming a traditional morphology into a Net ZEB, integrating the best available technologies, makes the integration of this building in peripheral areas of our cities easier.

This is one of thirty case study factsheets collected by participants in Subtask C of the IEA 'Net Zero Energy Buildings' (NZEBs) research project. Subtask C focuses on documenting and analysing current NZEBs design and technologies. The case studies form the basis of a proposed Source Book describing NZEB Solution Sets and quidelines and documenting monitored performance and lessons learned.

Architectural Design Concept

The Leaf House is N-S oriented and presents a compact shape; to increase its thermal performance, the North facade is set into a bank, enhancing thermal exchange with the ground. On the South facade, the glazed surfaces allow for good daylight in the building, and for enhancing the useful solar gains useful in Winter.

During the hotter season a large photovoltaic roof, integrated into the envelope protects the building from the sun, by overhanging on the South facade, so as to shadow the upper level of the building (3rd level). The second level is shadowed by a canopy made out of 7 thermal modules; the overhang of the balcony at the second level, provides shadow to the first level. These overhangs have been designed using dynamic simulations which have been used to design the optimized control of the building services through the building automation system, reducing not only the energy consumption of the building but its impact on the grid. Measured Energy Production and Consumption:

These data compare the overall energy consumption with the total energy generated though renewable energy onsite.

Energy Demand (kWh/m2.year)

Electricity

73.75 Final: Primary: 160.05

Energy Supply (kWh/m².year)

Renewable Energy Final: 51 89 112.60 Primary:

Source to Site Conversion Factor (Electricity):

In the graph **Final Energy Demand** is the sum of all delivered energy (kWk/m².year) obtained by summing all energy carriers. Final **Energy Supply** is the sum of all energy generated on site from renewable sources. The Primary Energy Demand and Primary Energy Credit have been calculated based upon the Primary Energy Conversion Factors for each energy carrier for this location.

175 150 (kWh/m².year) 125 100 Energy Supply 75 50 25 5 0 75 125 150 175 Energy Demand (kWh/m2.year) Energy Generated/Energy Consumed - Primary Energy Generated/Energy Consumed - Final

EnergyPlus Model

This model has been created by the STC participants to assist in the standardised analysis of the performance of this building. It calculates internal temperatures and energy consumption and production.

Key to colours:

Blue = Outside (sun and wind exposed) Yellow = Ground (floors and basement walls)

Purple = Building shading

Grey = Site shading (ground surfaces)

For more information

http://www.leafcommunity.com/?page_id =5&lang=en

Google earth

http://tinyurl.com/LeafHouseAlbum

The icons at the end of each section provide a visual key for the reader who wants to quickly organize all the case studies. They symbolically summarize the individual technology solution sets used in each building. Please see the key to the right for more

H - Heating

L - Lighting V - Ventilation

C - Cooling

Climate Analysis

The building climate method uses a reference residential building built to the local building code minimum insulation requirements to test the interaction between a building built in a location and the external climatic conditions in that location.

The Climate Challenge for the building designer is HEATING DOMINATED (HD) if the green bars meet between 70 and 100%; it is COOLING DOMINATED (CD) if they meet between 0 and 30%; it is MIXED HEATING AND COOLING (HCD) if they meet between 30 and 70%

P - Plug Load W - Water Heating E - Energy Export

Heat Flow (W/ºC)

Passive design techniques or solutions are design measures that require no direct purchased energy input. These design measures include optimisation of solar energy collection, storage and shading, plus natural ventilation and advanced day lighting measures. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of passive measures for this climate did not need to include this particular measure.

Construction

Walls - Construction Elements Facing Solar Noon

U-value (W/m² ºC) 0.15 Solar Absorptivity

2cm Plaster, 30cm Poroton Brick, 18cm Polystyrene Rofix EPS 100, 2cm Plaster

U-value (W/m² °C) 0.15 Solar Absorptivity

Facing Polar Direction

U-value (W/m² ºC) 0.15 Solar Absorptivity

124 of them below grade

U-value (W/m² ºC) 0.15 Solar Absorptivity

U-value (W/m² ºC) 0.25 Solar Absorptivity

3x1cm Plasterboard Pregyplac, 10cm woodfibre, 10 cm rockwool, 4cm airspace, 2cm Pinewood

Ground floor

U-value (W/m² ºC) 0.41

2cm ceramic tile, 5cm concrete, 4cm polyurethane, 5cm concrete, 0.5cm bitumen, 20cm concrete, 19cm air, 11.80cm gravel

Windows - Construction Elements

Solar noon

U-value (W/m² ºC) 0.86 0.61

Internorm, Edition, double glazing filled with argon

Fast

U-value (W/m² ºC) 0.86 0.61 g-value

U-value (W/m² ºC) 0.86 g-value 0.61

West

U-value (W/m² ºC) 0.86 g-value

As Built

Air permeability is the total building air leakage (m^3 . h^{-1}) per m^2 of building envelope at a reference pressure difference of 50 Pa.

Compactness (m-1)

High resistance to heat flow (high Rvalue, low U-value) is important in

climate where energy using services are used to maintain a large temperatures difference between indoors and outdoors.

Solution Sets are: A set of passive, energy efficiency, and/or renewable energy solutions used to mitigate or lessen the building challenges and achieve the design goal.

Building Challenge Solution Set - The set of solutions used to lower the energy needed by a particular building challenge.

Whole Building Solution Set - The set of solutions used to lower the energy consumption of the whole buildina.

Heating

Thermal Mass

Walls and floors have an high thermal mass

Cooling

Sunshading

The roof, solar thermal panels and the balcony behave like solar shields

Sunspaces

Green Roof/Façade Wide windows on the southern facade allow solar radiation to heat up Ventilated roof reduces the solar loads during summer the building

Heat Recovery

Preconditioning in an underground duct of the fresh air

Ground Cooling

Preconditioning in an underground duct of the fresh air

Daylight Systems

Solar tubes

The two apartments of the ground floor and the two apartments of the first floor have a bathroom not provided with windows: solar tubes allows natural light to light these rooms

Window Distribution Information

Distribution of Window Areas per Façade

In Passive design, the orientation of the windows and their size has an extreme effect on the heating, cooling and the daylight harvesting potential of the building. This graph enables simple comparison of these properties for each climate and building type.

North Facade West Facade ← East Facade South Façade

Façade Porosity - Percentage of Openings per Facade

In Passive Design, the orientation of the openings for Natural Ventilation is a response to the wind and the site. This graph enables a simple comparison of the porosity of each façade for each climate and building type.

Energy efficient technologies are specific equipment and appliances that focus on reducing the use of energy, in the building, through more efficient means. These energy efficient technologies are used in harmony with the passive design to lower the overall energy consumption of the building. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular

Innovative Technologies

The information below is organised under headings in the case study database Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular technology

Energy Reduction Measures for Plug Loads and Appliances

High efficiency appliances, stand by hutton

Energy Storage

Other

System Design Parameters

Appliances / Plug Loads

Air distribution

Power Density Installed (W/m²):

Artificial Lighting Outside Air Requirements per Person (L/s-p)

Power Density Installed (W/m²): Unknown

Computer Network

Power Density Installed (W/m²): Unknown Datacentre? No

Internal Environmental Systems and Domestic Hot Water

This section describes how the design team has provided for the internal space conditioning. Central systems place the heating, cooling and ventilation equipment in a separate space from the occupied rooms. The heating or cooling of the rooms requires a distribution system taking heat to or away from the occupied rooms using water (hydronic) or air. Distributed systems have separate heating, cooling and possibly ventilation equipment installed for each space.

Cooling **Heating Central Plant Central Plant** Yes Yes Distributed Plant Nο Distributed Plant Nο **Openable Windows** See Passive Systems Hydronic distribution Yes **Ceiling Fans** No Air distribution No Hydronic distribution Yes

Nο Description Description

Cooling provided by the radiant floor, cooling demand covered by an heat pump. An electric dehumidifier is switched on if the UR becomes critical (few hour a year)

Space heating (radiant floors) and domestic hot water demands are covered by an electric heat pump operating with three ground probes and by the heat produced from flat plate solar thermal collectors in the facade at first floor.

Ventilation System **DHW - Domestic Hot Water**

Heat Recovery Type Yes Solar? Yes Central Air supply Yes Waste Water Heat Recovery? No Local Air Recirc plus Central Fresh Air No Gas? No Electrical? Other?

Description Description

Entalpic DHW is produced completely or partially (depending on the season) from seven flat solar thermal collectors.

HVAC Systems othermal Heat Pump

Artificial Lighting Fluorescent

Control Systems

The critical feature of a successful ultra low energy building is the user interaction. Without control systems that are responsive to user needs and easily understood successful operation is extremely difficult.

HVAC **Lighting** Description Description

Computer Management

Building Automation, remote monitoring

User Interactions **Energy Storage** Latent Storage? No User Manual Provided? No Fuel Cell? No

Description Compressed Air? No Control of Systems

Engineer Civil

Address

Engineer MEP Name

Trillini Engineering

Address

12, via Costa, Morro d'Alba, Ancona, Italy

info@trillini.com

Web Address www.trillini.com

Engineer Structural

Address

mail

Web Address

Architect

Arch Pacifico Ramazzotti

6, Viale Madonna della figura, Apiro,

Macerata, Italy

Fmail

info@pacificoramazzotti.com

Web Address

www.pacificoramazzotti.com

Builder/Contractor

Edil Loroni Address

7, Via Angeli, Mergo, Ancona, Italy

Web Address

Source and Type of Funding

Project completely financed by Loccioni

Group

Principal Actors

Architect, energy expert consultant, MEP

Author

Contact

Davide Nardi Cesarini

d.nardicesarini@loccioni.com

This project has been organised under the framework of two International Energy Agency implementing agreements: Solar Heating and Cooling and Energy Conservation in Buildings and Community Systems. For more information please visit: www.iea-shc.org/task40

Energy Supply and Integration of Renewable Energy:

"By definition, a renewable energy source is a fuel source that can be replenished in a short amount of time. (American Society Of Heating, Refridgerating and Air-Conditioning Engineers, 2006)" Through the use of these replenishing energy sources, the annual energy demand of an already low-energy building can be offset through the renewable energy generation. Renewable energy sources are converted to energy using renewable energy generation technologies or solutions. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy supply and integration of renewable energy for this climate did not need to include this particular measure.

Electricity Production

Photovoltaic (PV) Yes

Building Integrated PV? Integrated roof **Ground mounted** No

Roof mounted Yes Position Fixed Tilt (angle) 229 Azimuth 0°

Technology (115x) Shuco 175-SMG-S (Monocrystalline silicon)

Nominal Power (kWp) 20.1

150 (0.31 m2/m2) Area (m²)

Yield (kWh/m².year) 43 Expected generation (kWh) 52 Measured generation (kWh) 25650

Solar Water Heating

Hot Water

Solar Thermal

Technology flat plate collectors Shuco Sol S

Position Positioned in order to behave like solar shields for the first floor

Area (m2) 18.83 Production (kWh/m2.vear) 8.9 Annual % of Hot Water 63

Production of Heating and Cooling

Heating Equipment

Heat Pump Technology Geothermal Heat Pump

Power 16.6 Efficiency (%) 4.6 Production (kWh/m2.yr) 27.4

Annual % of Heating

Cooling Equipment

Heat Pump

Geothermal Heat Pump Technology

13 Efficiency (%) 4 Production (kWh/m².year) 20 Annual % of Cooling 100

This graph shows the expected proportion of generation (kWh/m²) of energy produced by the various renewable energy sources based on design

Ground / Water Source Heat Pump

3 vertical 100 m probes

16.6

4.6

27.4

calculations.

■ Energy produced from on site Wind Turbines Hybrid energy production

Turbine

On-site

References

American Society of Heating, Refridgerating and Air-Conditioning Engineers. Ashrae Green Guide: The Design, Construction, and Operating of Sustainable Buildings USA: Elsevier 2006. Belleri, Annamaria, Assunta Napolitano, and Roberto Lollini. "Net Zeb Evaluation Tool - User Guide " (2012).

Pixel Building

2010

Location

Australia

205 Queensberry St Melbourne Victoria

Latitude Longitude 37° 48' 16" S 144° 57' 43" E

Climate Challenge Definition

Buildings are either cooling dominated, heating dominated or mixed heating and cooling dominated. A building is climate dominated if one of a reference buildings space conditioning processes is 70% or greater of the total space conditioning load.

Climate Challenge

Cooling Dominated

Building Type Non-residential Office

Site Context

Urban Centres - over 5 storey average neight of neighbouring buildings, adjacent buildings touching, street widths 40+m

Net Floor Area (m²)

1084.6

Conditioned Floor Area (m²)

837.4

Occupancy (m² per Person)

Number of Storevs

Cost US\$/(Net) m2 Floor Area 4,556,548

Cost US\$/(Net) m² typical similar building

3,500,000

Net Zero Energy Building Overview

The world's first carbon neutral office building - Intensive use of energy efficient measures, also includes renewable energy sources. Biogas plant, solar PV and wind turbines provide a significant portion of the building's energy. The building is also water self-sufficient. Highly sustainable materials selection, excellent indoor environment quality and ultra-low emissions building.

This is one of thirty case study factsheets collected by participants in Subtask C of the IEA 'Net Zero Energy Buildings' (NZEBs) research project. Subtask C focuses on documenting and analysing current NZEBs design and technologies. The case studies form the basis of a proposed Source Book describing NZEB Solution Sets and guidelines and documenting monitored performance and lessons learned.

Architectural Design Concept

No more than 500 words - e,g, compact design with small highly insulated windows; passive solar design with narrow plan design open to Natural ventilation/solar gain and daylight;

Designed Energy Production and Consumption:

These data compare the overall energy consumption with the total energy generated though renewable energy onsite.

Energy Demand (kWh/m².year)

Natural Gas Electricity Final: 57 35 Primary: 170 105

Energy Supply (kWh/m².year)

Renewable Energy

Final: 15 Primary:

Source to Site Conversion Factor (Electricity):

In the graph **Final Energy Demand** is the sum of all delivered energy (kWk/m².year) obtained by summing all energy carriers. Final Energy Supply is the sum of all energy generated on site from renewable sources. The Primary Energy Demand and Primary Energy Credit have been calculated based upon the Primary Energy Conversion Factors for each energy carrier for this location.

250 225 year) 200 (kWh/m² 175 150 125 Supply 100 75 Energy 50 25 75 100 125 150 225 Energy Demand (kWh/m².year) ■ Energy Generated/Energy Consumed - Primary Energy Generated/Energy Consumed - Final

EnergyPlus Model

This model has been created by the STC participants to assist in the standardised analysis of the performance of this building. It calculates internal temperatures and energy consumption and production.

Blue = Outside (sun and wind exposed)

Yellow = Ground (floors and basement walls)

Purple = Building shading

Grey = Site shading (ground surfaces)

Climate Analysis

The building climate method uses a reference non-residential building built to the local building code minimum insulation requirements to test the interaction between a building built in a location and the external climatic

The Climate Challenge for the building designer is HEATING DOMINATED (HD) if the green bars meet between 70 and 100%; it is COOLING DOMINATED (CD) if they meet between 0 and 30%; it is MIXED HEATING AND COOLING (HCD) if they meet between 30 and 70%.

Web Address

www.pixelbuilding.com.au

For more information:

http://tinyurl.com/Pixel-AU

The icons at the end of each section provide a visual the case studies. They symbolically summarize the individual technology solution sets used in each building. Please see the key to the right for more

W - Water Heating

C - Cooling

Plug Load E - Energy Export

Passive design techniques or solutions are design measures that require no direct purchased energy input. These design measures include optimisation of solar energy collection, storage and shading, plus natural ventilation and advanced day lighting measures. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of passive measures for this climate did not need to include this particular measure.

Construction

Walls - Construction Elements

Facing Solar Noon

U-value (W/m² ºC) Solar Absorptivity #VALUE!

East U-value (W/m² ºC)

Solar Absorptivity #VALUE!

Facing Polar Direction

U-value (W/m² ºC) Solar Absorptivity #VALUE!

West

U-value (W/m² ºC) Solar Absorptivity #VALU

Roofs

U-value (W/m² ºC)
Solar Absorptivity #VALUE!

Ground floor

U-value (W/m² ºC)

Windows - Construction Elements

Solar noon U-value (W/m² ºC)

g-value

East

U-value (W/m² ºC) g-value

Polar direction

U-value (W/m² ºC) g-value

West

U-value (W/m² ºC) g-value

Air permeability (m³/m²h@50pa)

Air permeability is the total building air leakage (m3.h-1) per m2 of building envelope at a reference pressure difference of 50 Pa.

As Built

Compactness (m-1)

Heat Flow (W/ºC)

High resistance to heat flow (high Rvalue, low U-value) is important in climate where energy using services are used to maintain a large temperatures difference between indoors and outdoors.

Heating

Heat Recovery

Air is exhausted from the building via the air handling unit through the toilet exhaust, photocopy exhaust and the spill air grilles. All of these exhausts are combined as part of a single exhaust system that is drawn through a sealed air to air heat exchanger in the air handling unit before being exhausted from the building.

Cooling

Green Roof/Façade

challenae.

buildina.

The planting on the roof and around the living edges of Pixel provide local environemental cooling and insulation to the building envelope.

Solution Sets are: A set of passive, energy efficiency,

and/or renewable energy solutions used to mitigate or

lessen the building challenges and achieve the design

Building Challenge Solution Set - The set of solutions

Whole Building Solution Set - The set of solutions

used to lower the energy consumption of the whole

used to lower the energy needed by a particular building

Natural Ventilation

There are high levels windows to the north and west facades that are operated at night in summer by the BMS. These windows open for pasive night purge but they are also enabled to flood the office floors with cool night air so that the exposed ceiling absorbs that coolth, thsu reducing the requirement for hydronic cooling in the morning at start-up.

Sunshading

The building is designed with an extensive system of external shading that extends across the north and west facades and partially across the south. In addition to providing glare control these panels shade the building in the warm summer months to reduce the thermal load on the fabric and office space.

Daylight Systems

Exteroir Panel System to the North, West and South

The building is designed with an extensive system of external shading that extends across the north and west facades and partially across the south. Modelling has been performed to demonstrate that the external shading limits direct sun at the working plane 1.5m in from the facade for greater than 80% of working hours for each typical glazing configuration on each of the North, West, South and East facades. The software Ecotect has been used to calculate the total number of sunlight hours at a range of grid points throughout each floor plate. The

Window Distribution Information

Distribution of Window Areas per Façade

In Passive design, the orientation of the windows and their size has an extreme effect on the heating, cooling and the daylight harvesting potential of the building. This graph enables simple comparison of these properties for each climate and building type.

Façade Porosity - Percentage of Openings per Façade

In Passive Design, the orientation of the openings for Natural Ventilation is a response to the wind and the site. This graph enables a simple comparison of the porosity of each façade for each climate and building type.

Plan The

Thermal Zoning

Advanced Glazing

etural Ventilation C

AIR

Evaporative Cooling Gain T

Energy efficient technologies are specific equipment and appliances that focus on reducing the use of energy, in the building, through more efficient means. These energy efficient technologies are used in harmony with the passive design to lower the overall energy consumption of the building. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular system.

Innovative Technologies

The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy efficient Systems for this climate did not need to include this particular technology

Energy Reduction Measures for Plug Loads and Appliances

Highly efficient applicances selected as policy

Energy Storage

Other

Active mass cooling system in conjunction with underfloor air delivery; use of naerobic digester to generate biogas for domestic hot water generation; Living Edge wetlands on each level of building: 'Pixelcrete' high recycled content concrete; rainwater harvesting and processing for water self-sufficiency

HVAC Systems

Robur Units x 4

Artificial Lighting

Daylight Harvesting, general artificial lighting is max 2.5W/m2

omputer Management

Optergy BMS system

Control of Systems

Dynamic BMS management

System Design Parameters

Outside Air Requirements per Person (L/s-p) **Artificial Lighting**

3 Power Density Installed (W/m²):

Computer Network

Appliances / Plug Loads 4.2 Power Density Installed (W/m²): Power Density Installed (W/m²): 10 Datacentre? Yes

Internal Environmental Systems and Domestic Hot Water

This section describes how the design team has provided for the internal space conditioning. Central systems place the heating, cooling and ventilation equipment in a separate space from the occupied rooms. The heating or cooling of the rooms requires a distribution system taking heat to or away from the occupied rooms using water (hydronic) or air. Distributed systems have separate heating, cooling and possibly ventilation equipment installed for each space.

Cooling **Heating** Yes Central Plant

Central Plant Yes **Distributed Plant** No **Distributed Plant** No **Openable Windows** Hydronic distribution See Passive Systems No Ceilina Fans No Air distribution Yes

Hydronic distribution Yes Yes Air distribution

Description Description

Cooling is provided through hydronic in-slab pipework in chilled ceilings. Ceilings are 100% exposed concrete. Supplementary cooling is provided through air supply (underfloor air distribution) with 100% outdoor air.

Space heating is provided by via the ventilation air supply (100% outdoor air), with the heat for this provided by the gas-fired heat pump (heating hot water coil). Heating is required only

intermittently throughout the year, mostly in mid-winter.

Ventilation System DHW - Domestic Hot Water

Yes Heat Recovery Type Solar?

Central Air supply Yes Waste Water Heat Recovery?

Local Air Recirc plus Central Fresh Air No Gas? Electrical? Yes

Other?

Description Description 100% outdoor air with air to air heat exchanger

Domestic hot water is generated using a gas-fired boiler. The primary fuel source for the DHW plant is biogas from the anaerobic digester (AD) that is produced from the vacuum toilet waste discharge. Backup is mains supplied natural gas, but full capacity is provided under normal operating conditions by the AD plant.

Control Systems

The critical feature of a successful ultra low energy building is the user interaction. Without control systems that are responsive to user needs and easily understood successful operation is extremely difficult.

Switching panels are located at the entrance to each floor, and are zoned so that each level contains 3 lighting zones. Lighting is switched on & off via occupancy sensors, and daylight sensors control the lighting levels in response to daylight. Task lighting is located on each workstation, with occupancy sensors also connected to this system. Out of hours control is via switching in the space, with occupancy sensors switching off. All lighting is switched off during the hours of 11pm-5am to eliminate light pollution.

Energy Storage

Latent Storage? Nο Fuel Cell? Nο Compressed Air? Nο

HVAC

The building automation system controls the space temperature, slab surface temperature and chilled/heating hot water temperatures to maintain the occupant comfort within the required band. The air andling unit supply air temperature to the plenum modulates down to a minimum of 17.5°C (17°C + 0.5°C temp rise) in full cooling to maintain the average space temperature set point of 25.0°C. On a call for heating the supply air temperature to the plenum modulates up to a maximum of 36.0°C (adjustable) in full

User Interactions

User Manual Provided? Yes

Thermal Storage

General temperature levels are controlled on the air side by user selection of temperature. Every individual then has control over the temperature at their workstation through the use of an adjustable floor diffuser for air supply quantity. Task lighting enables individual adjustment of the lighting levels at each workstation.

Heat Recovery

Engineer Civil

Name

Umow Lai

10 Yarra St, South Yarra, Melbourne

mail

ulmelb@umowlai.com.au

Web Address

www.umowlai.com.au

Engineer MEP

Name Umow Lai Address

Van Der Meer Consulting

email

ulmelb@umowlai.com.au

Web Address www.umowlai.com.au

Engineer Structural

Name VDM Ptv I td Address

email

Web Address

Architect Name

Studio 505 Address

61 Little Lonsdale St. Melbourne

Fmail

mail@studio505.com.au

Web Address

www.studio505.com.au

Builder/Contractor

Name

Grocon Constructions

Address

3 Albert Coates Lane, Melbourne

Email

Web Address

www.grocon.com.au

Funding

Source and Type of Funding

No more than 500 words

Principal Actors

No more than 200 words

Authors

David Waldren

davidwaldren@grocon.com.au

This project has been organised under the framework of two International Energy Agency implementing agreements: Solar Heating and Cooling and Energy Conservation in Buildings and References Community Systems. For more information please visit: www.ieashc.org/task40

Energy Supply and Integration of Renewable Energy:

"By definition, a renewable energy source is a fuel source that can be replenished in a short amount of time. (American Society Of Heating, Refridgerating and Air-Conditioning Engineers, 2006)" Through the use of these replenishing energy sources, the annual energy demand of an already low-energy building can be offset through the renewable energy generation. Renewable energy sources are converted to energy using renewable energy generation technologies or solutions. The information below is organised under headings in the case study database. Where a field is blank it is because the building design team decided that the NZEB design solution set of energy supply and integration of renewable energy for this climate did not need to include this particular measure.

Electricity Production

Photovoltaic (PV) Yes **Wind Turbine Building Integrated PV?** Position No On-site **Ground mounted Number of Turbine** No **Roof mounted** Vertical Yes Technology Position Nominal Power (kWp) 1.7 kWp Tracking Tilt (angle) Tracking Energy Production (kWh/m².year) 13.50 Azimuth Tracking

SunPower 210W panel Technology Nominal Power (kWp)

Area (m²) 27 Yield (kWh/m².year) Expected generation (kWh) 6665.00 Measured generation (kWh) Not yet finalised

Solar Water Heating

Hot Water

Biogas System Technology **Position** Roof unit Area (m2)

Solar Thermal Nο

Production (kWh/m².vear) 2 60 Annual % of Hot Water 100

Combined (Cooling) Heat and Power

Combined (Cooling) Heat and Power

Type Fuel Efficiency (%) Electricity **Water Heating** Space Heating Cooling

Production (kWh/m².year)

Flectricity Water Heating **Space Heating** Cooling

Renewable Production of Heating and Cooling

Heating Equipment

Heat Pump

Technology Robur gas-fire Robur gas-fired ammonia absorption heat

gmug 100.8kW

Power Efficiency (%) 1.4 Production (kWh/m².yr) 5.65 Annual % of Heating

Cooling Equipment

Heat Pump Technology Robur gas-

Power

Efficiency (%) 0.67 Production (kWh/m².year) 28.70 Annual % of Cooling

This graph shows the expected proportion of generation (kWh/m²) of energy produced by the various renewable energy sources based on design calculations.

Solar Cooling

PV/Thermal Array

American Society of Heating, Refridgerating and Ait-Conditioning Engineers. Ashrae Green Guide: The Design, Construction, and Operating of Sustainable Buildings USA: Elsevier 2006. Belleri, Annamaria, Assunta Napolitano, and Roberto Lollini, "Net Zeb Evaluation Tool - User Guide" (2012).