

Energy Efficient Communities

- Technological Strategies and their Implementation -

"Emerging Urban Sustainability by Co-Evolution of Technical Infrastructure and Urban Form"

Reinhard Jank "EnEff:Stadt" program, Germany

→ Target: -80 % GHG?

 \rightarrow

- Renewables

- Building stock → Cities!

(2) Energy optimized buildings:

Envelope

Ventilation / HR

renewables

user behaviour

GHG savings vs additional costs:

- 1: room control
- 2: envelope retrofit (inc. windows)
- 3: ventilation / heat recovery
- 4: PV panel (6,5 kWp)
- 5: Solar collectors
- 6: Passivhaus standard

Multi-family residential building: 50 years, 230 kWh_{PE}/m² (36 flats, 9 floors)

Retrofit optimization, MF residential building, Karlsruhe-Rintheim:

Investment costs of "city energy transition"?

- → building energy retrofit ~ 300 €/m²
- → DH infrastructure ~ 80 €/m²
- → City of 300.000: ~ 11 mio. m^2
- → 3,6 billion € total investments over ~ 30 years (120 mio. €/a)

Energy costs of private households?

- Thermal energy: ~ 150 mio. €/a
- Electricity: ~ 80 mio. €/a

Conclusion: System optimization!!

Neighborhood refurbishment Rehmplatz / Aachen

1.750 flats → 80 mio. € (46.000 €/flat)

Heating demand (kWh/m²)

DH scheme Rintheim: Impact of energy conservation on distribution costs

"Settlement archetypes" (U. Roth, 1980):

Aachen

die energieeffiziente Stadt

DH distribution costs of various types of settlements (€/MWh)

Community energy system model: RES – the traditional picture (MARKAL, TIMES etc.)

New grid: interlinked, "smart" ...

Baseload: Coal, Gas, Nuke Hydro, Biomass	Transmission: DC / AC	Smart Buildings: LowE, DH, HP, MicroGen, th. storage
Large scale storage	Cogeneration	micro grids
Renewables (fluctuating): Wind; solar	Smart Grids (bidirectional, peak-shaver)	e-mobility

... from passive to active ...

What drives the transition processes?

- → incentives:
 - energy prices
 - carbon taxes
 - subsidies
- → legal requirements
- → local urban planning
- → local economic development
- → population migration
- → technical developments
- → new business opportunities
- $\rightarrow \dots$

"invisible hand" + "coordination"

Implementation management:

Conclusions:

"City transformation"

- foster circularity of mass flows
- optimize use of regional resources
- improve urban form (infill, density, multifunctionality)
- transportation
 - → quality of living: *urban sustainability*

