

Haus der Zukunft^{PLUS}

eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie (BMVIT)

ANNEX 4: Ergebnisprotokoll des Baubionik Workshop 4 – TRIZ (Ergebnisbeispiel für Ideendetailfindung: Vakuumtapete)

Arbeitsergebnisse

BAUBIONIK POTENZIALE Projektnummer 822515

Ein Projektbericht im Rahmen der Programmlinie

Baubionik-Potenziale – Workshop 4

Einbindung Österreichisches TRIZ-Zentrum und Campus02

Aufgabenstellung:

Beidseitig beschichtetes evakuiertes Abstandsgewirk als Wärmedämmung.

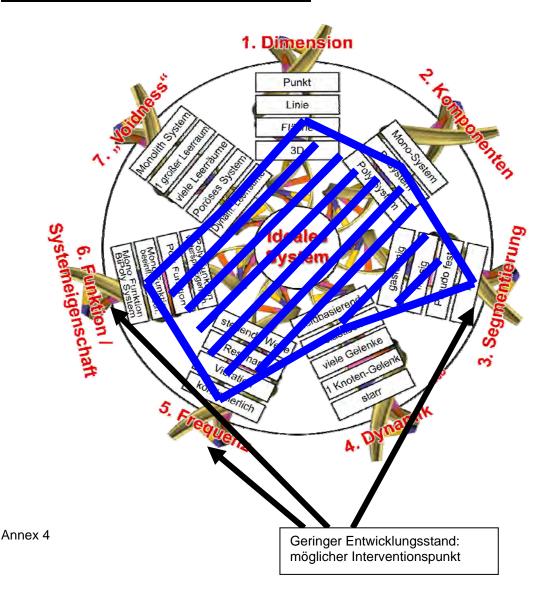
Moderation: Schinagl

Zugrundeliegende Dokumente:

"Innovationscheckliste Vakuumtapete" und "Ideendossier Vakuumtapete"

Fragestellung:

- Bei Fassendämmung kommen meist Isoliermaterialien und Verfahren zum Einsatz, welche im Wesentlichen eine geringe Wärmeleitung aufweisen, bzw. ermöglichen.
- Der Wärmedurchgangswiderstand ist von einer Materialkonstante und der Dicke abhängig. Daraus resultieren bei den gängigen Dämmstoffen für zB Niedrigenergiestandard Dicken von jedenfalls >> 12cm.
- Einzige Möglichkeit, welche dickenunabhängig ist, ist die Vakuumdämmung analog einer Thermoskanne.
- Während bei Panelen ein Hochvakuum von 10⁻⁶ mbar zur effektiven Reduktion des Wärmeüberganges benötigt wird, reicht in feinem Gewebe ein milderes Vakuum von 10⁻³ bar.
- In der Praxis fällt das Vakuum aber meist relativ rasch ab, da eine 100%ige Dichtheit der Umhüllung nicht machbar ist. Die Hüllen sind meist metallbeschichtete Kunststoffe oder Alufolien. Aufgrund der Molekulardiffusion diffundiert zB H2 praktisch überall durch, auch O2, N und sogar H2O etc. gehen durch dünne Schichten.
- Derzeitige Lösung: Poröse Kunststoffpanele evakuuiert und mit Alufolien oder beschichteten Kunststofffolien umhüllt Handelsnamen: Microtherm VIP, vacupact, va-Q-tec, tempsafe vgl.: http://www.vakuum-isolations-paneel.com/messung_gasdruckanstieg_en,2802.html
- Als Fassadendämmmaterialien soll ein Abstandsgewirk zum Einsatz kommen, welches beidseitig mit dichten Folien kaschiert ist und der Innenraum evakuiert wird.
- Idee: Ein Torricelisches Vakuum (entspricht dem H2O Dampfdruck bei Umgebungstemperatur – <. 10⁻² mbar) soll in unregelmäßigen Abständen hergestellt werden. Dies kann dadurch geschehen, einzelnen Zellen der Dämmschicht mit Regenwasser vollständig geflutet und dann abgelassen werden.


Annex 4 2 / 13

- Der verbleibende Wasserdampf könnte weiters druch einen Trockner -zB Silikagel- gebunden werden. Ausgasender Sauerstoff könnte eventuell in einer Reduktionsschicht gebunden werden. Weitere Gase durch Oxidative Oberflächen –"Getter".
- Zusammendrücken der beiden Schichten durch Abstandsgewirk selbst und Ausdehnung _
 Pulsation aufgrund äusserem Energieeintrag (Solar, Temperaturunterschied ...vgl. Bimetall) Pulsation auch aufgrund feuchtesensitiver Spiralfäden (vgl. alte Fechtemessung mittels Haar)
- Mehrere Schichten mit nach innen abnehmendem Druck hochvakuum nur innen,
 Beulung daher nur wegen geringerer Differenzdrücke zwischen den Schichten, versetzte
 Abstandsfäden für reduzierte Wärmeleitung der Stegfäden
- Visionär: Selektive Membran mit Potentialspannung trennt Tauwasser in O2 und H und trennt diese gerichtet - produziert H2 (Halbe Photosynthese) – Oxidation in 2. Schicht zur Erzeugung der Spannung (vgl. Brennstoffzellenmembran)

Analyse anhand Evolutionslinien nach TRIZ:

Ideal Final Result:

Nutzen: Wärmeleitwert = 0, Aufwand = 0

Spontanideen:

❖ Verwendung von Silikonöl mit 0,1 W/m2K

Stege als Latentwärmespeicher ausführen

Widersprüche:

Statisches Gewicht reduzieren (2) → Stabilität verschlechtert sich (13)

Druck (11) → Gewicht erhöht sich (2)

(Komplexibilität (36) → Energieverschwendung (22))

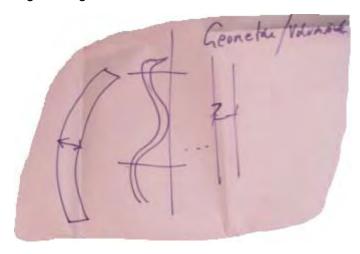
Flexibilität (33) → Komplexität (36)


Lösungsprinzipien:

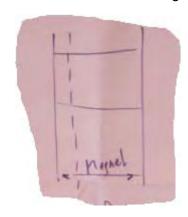
2 (2mal), 12, 13, 17 (2mal), 8, 19, 22 (2mal), 25, 29, 32, 35, 36

1.) Segmentieren: Wärmedurchgangsweg erhöhen, Stege geometrisch verlängern,

Einlagerung von Silikatplättchen in Dichtschichtkunststoff, damit Diffusion schwieriger wird.



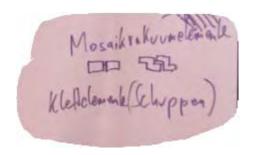
Annex 4 4 / 13



Volumenänderung durch Geometrieänderung bei einer Vorspannung/Vorkrümmung und montagebedingtem Ebnen etc.:

Variable Hohlraumfüllung und Abstandsreduktion durch zB Magent etc.:

Bei TWD (Transparenter Wärmedämmung) auch variable Gasfüllungen etc.:



Mosaikvakuumelemente und Klettelemente (Schuppen):

Annex 4 5 / 13

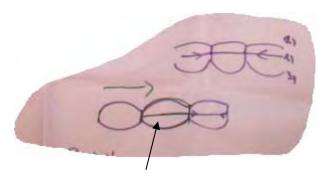
2.) Abtrennen:

--

3.) Herauslösen

--

10.) Vorsorgen


--

12.) Niveau ausgelichen

"Getter", Entfeuchter

13.) Umkehrung Einmachglas (erhitzen – zumachen)

17.) Dimensionserweiterung:

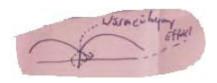
Querfäden zwischen den Stegen verhindern das Zusammendrücken

18.) Schwingung/Resonanz/Ultraschall

Nutzung Tag-Nacht Rhythmus oder Jahreszeitlicher Rhythmus

Querfäden von 17) in Schwingung versetzt, oder Bimetall, oder elektrisch geheizt ev. Als Spirale etc.

Annex 4 6 / 13



19.) Impuls

22.) Nutzung von schädlichen Effekten

29.) Pneumatik

Stege als Pneu

32. Farbwechsel

Transparenz, Luminiszenz

- 35) Aggregatzustandsänderung/Temperatur
- 36) Phasenübergang

Latentwärme-Stege oder Schichten oder

Annex 4 7 / 13

Ursprüngliche Fragestellung:

Eine Gebäude-Aussendämmung kann beispielsweise durch ein Vakuum erfolgen (vgl. Thermoskanne) – bekannt sind Alu-Vakuumpanele, "Putz" mit Vakuumkugeln und evakuierte Kunststofffasergemenge als Stützkern mit gasdichter Umhüllung.


Vorteil: Unterbindung der Wärmeleitung mittels sehr dünner Schicht (Vakuumschicht theoretisch beliebig dünn; eine Wärmeleitung zwischen den beiden Ebenen ist dennoch durch den Aufbau, bzw. durch die Stützstruktur gegeben Stege bei Panelen, oder Kontaktstellen der Kugeln ...).

Innovations-Checkliste

- 1. Informationen über das zu verbessernde / zu kreierende System und dessen Umfeld
- a) Systembezeichnung

Standardbezeichnungen verwenden

Vakuumtapete

b) Primäre nützliche Funktion des Systems

korrekte Funktionsbeschreibung mit zugehöriger Limitation.

Niedriger Wärmedurchgangswert durch Vakuum

Annex 4 8 / 13

c) Bestehende oder wünschenswerte Systemstruktur

Beschreibung der statistischen Systemstruktur und Zeichnungen mit Kennzeichnung aller Komponenten und Verknüpfungen.

Zeichnung:

- Abstandsgewirk
- Transluzent (für transparente Wärmedämmung)
- Innen evakuiert
- Fntweder
 - o 100% dauerhalft dicht, oder
 - Permanent oder zeitweise selbst evakuierend
- Nicht einbeulend oder ???
- Einfacher Aufbau
- Billiq
- Haltbar, witterungsstabil
- Keine Schwermetalle als Stabilisatoren etc.

d) Arbeitsweise des Systems

Beschreibung der Interaktion aller Subsysteme und Komponenten bei der Ausübung der primären nützlichen Funktion des Systems.

2 dichte Folien werden von einem Abstandsgewirk auf Distanz gehalten, Innendruck gegen 0. Eventuell mehrere solcher Schichten

Vorhandene Ideen für Selbstevakuierung (Preexisting Ideas):

- Torricelisches Vakuum, eventuell durch Regenwasser, welches gesammelt, zeitweise eingeleitet und nach vollständiger Flutung von zB nur einer Kammer abgelassen wird.
- ❖ Konzentration von Sauerstoff, Stickstoff, H2 und H20 innen und anschließend Bindung in Oberfläche mittels Oxidation etc. – "Getter" und Trockner (Silika) bei Wasserdampf
- ❖ Zusammendrücken der beiden Schichten durch Abstandsgewirk selbst und Ausdehnung _ Pulsation aufgrund äusserem Energieeintrag (Solar, Temperaturunterschied ...vgl. Bimetall) Pulsation auch aufgrund feuchtesensitiver Spiralfäden (vgl. alte Fechtemessung mittels Haar)
- Mehrere Schichten mit nach innen abnehmendem Druck Hochvakuum nur innen, Beulung daher nur wegen geringerer Differenzdrücke zwischen den Schichten, versetzte Abstandsfäden für reduzierte Wärmeleitung der Stegfäden
- ❖ Visionär: Selektive Membran mit Potentialspannung trennt Tauwasser in O2 und H und trennt diese gerichtet; produziert H2 (Halbe Photosynthese) Oxidation in 2. Schicht zur Erzeugung der Spannung (vgl. Brennstoffzellenmembran)

http://docs.google.com/viewer?a=v&q=cache:7VEZ6Zld9KEJ:www.sto.at/evo/web/sto/38246_DE-nla0711-Vakuumdaem-

 $\frac{mung.htm+vakuumd\%C3\%A4mmung\&hl=de\&gl=at\&pid=bl\&srcid=ADGEESg4blDBe16pE2kpnl02tdxENwA \ HHMnYxFdNwzVvtlY68f0EpYO zbq4Xx8ZMLRiTAcS-z5CL hRNoDSFodhlczSVg9ue1jtWSfvK1ZQDdUQqbLw4EH-c5nnyUS0ENh4MdXG0Xt&sig=AHIEtbQd4itHQ6boS6UzdqqQgmClb03gvQ}$

Annex 4 9 / 13

http://de.wikipedia.org/wiki/Vakuumwärmedämmung http://de.wikipedia.org/wiki/Vakuumdämmplatte

e) Systemumfeld

Beschreibung des Supersystems, der Systemumwelt und anderer direkt oder indirekt interagierenden Systeme.

- Aussen: Bewitterung, Bestrahlung, ev. Bepflanzung
- ❖ Innen: Behaglichkeitsklima (geringe Temperaturschwankung um 22°C, Feuchtigkeitsschwankungen 30 bis 80% relative Feuchte)

2. Verfügbare Ressourcen

a) Stoffliche Ressourcen

Abfall, Rohmaterialien und Produkte, Systemkomponenten, preiswerter Stoff, Stofffluss, Stoffeigenschaften

- Luft, CO2 ..., Regenwasser
- Wandstoffe
- Hagelschläge

b) Feldförmige Ressourcen

Energie im System und aus der Umgebung, aufbauen auf mögliche Energiequellen, Abfall des Systems wird selbst zur Energiequelle des Systems

- Temperaturdifferenzen zwischen Innen und Aussen,
- Feuchtigkeitsdifferenzen zwischen Innen und Aussen,
- Solarstrahlung
- Wind
- Auftreffende Festkörper (Vögel, Hagel)
- Potentielle Energie (Eigengewicht)
- ❖ Latente Wärme von Tauwasser, Reif
- Wärmeausdehnung Tauwasser, Reif Anomalie des Wassers

c) Räumliche Ressourcen

Leerraum, andere Dimension, vertikale Anordnung, Verschachteln

Aussen offen

d) Zeitliche Ressourcen

im Voraus arbeiten, vertakten, parallel arbeiten, nacharbeiten

- Jahrzehnte
- Saisonale Schwankungen aller Wetterdaten
- Tagesrythmus von b)

e) Funktionale Ressourcen

primäre Funktion bietet selbst Ressource, schädliche Effekte nutzen, sekundäre oder Hilfsfunktionen nutzen, Abstossreaktion

- Belastbarkeit, Tragfähigkeit
- Befestigung?
- Dichtheit
- Transluzenz

Annex 4 10 / 13

f) Information

Info durch Stoff selbst erbracht, Info ist inhärente Eigenschaft, bewegliche Info, temporäre Info, Info über eine Zustandsänderung, Geruch, Geräusch

- Transluzenz,
- Ebenheit oder Oberflächenform
- Farbgebung?

3. Informationen zur Problemsituation

a) Angestrebte Verbesserung des Systems, der Konstruktion oder ein Nachteil, der eliminiert werden soll. Dokumentieren der Gründe, die das Problem verursachen und Nachteile, die Sie stören.

Es wird zwischen 2 Platten ein Hochvakuum (<10⁻⁶ mbar) benötigt, in feinem Gewebe reicht aufgrund der geringeren Freiräume für die Molekularbewegung zur Unterbindung einer effektiven Wäremleitung bereoits 10⁻³ bar.

In der Praxis fällt das Vakuum relativ rasch ab, da eine 100%ige Dichtheit der Umhüllung nicht machbar ist – meist alubeschichtete oder sonstige metallbeschichtete Kunststoffe (sehr teuer).

b) Mechanismus oder Wirkungsweise des Nachteils

Klären des Mechanismus,

Entstehungsgrundes, Bedingungen und Umstände für das Entstehen eines Nachteils.

- Molekulardiffusion
- zB diffundiert H2 praktisch überall durch, ^auch O2, N und sogar H2O etc. gehen durch dünne Schichten durch
- vgl.: http://www.vakuum-isolationspaneel.com/messung_gasdruckanstieg_en,2802.html

c) Entwicklungsgeschichte des Problems

Vorgeschichte und Gründe der Problementstehung

- a) Isolierkanne (dicke Hülle, teilweise Glashülle, konkave Form zur Lastaufnahme (atmosphärischer Druck beult sonst ein) daher wenige Stege für Abstandhaltung von Innen- und Aussenhülle nötig
- b) Planparallele Panele aus Alu mit versetzten Stegen
- c) Vakuumkugeln
- d) Gel mit Mikrovakuumkugeln
- e) Airogel
- f) Kunststoffpanele evakuiert und mit Alufolien oder beschichteten Kunststofffolien umhüllt Handelsnamen: Microtherm VIP, vacupact, va-Q-tec, tempsafe

Annex 4 11 / 13

d) Andere zu lösende Probleme

Mögliche Alternativen zur Weiterentwicklung des Systems, die Ursachen von Nachteilen eliminieren oder einfacher zu lösende Probleme erzeugen.

Beschattung im Sommer, bzw. Änderung der Transluzenz gegen Überhitzung

4. Veränderung des Systems

a) Grad der zulässigen Veränderungen am System Grad der zulässigen Veränderungen am System, von kleinsten Änderungen, massive Designänderung bis zur Kehrtwendung im Design.

Dicke soll möglichst gering bleiben, sonst alles erlaubt

b) Grenzen der Änderungen des existierenden SystemsWelche Eigenschaften des bestehenden Systems sollten konstant bleiben, sich nicht verringern, sich nicht erhöhen und geben Sie die Gründe dafür an.

Statik muss gewährleistet bleiben, zumindest im Verbund

5. Auswahlkriterien für Lösungskonzepte

a) Angestrebte technische Eigenschaften

Transluzenz

<u>Widerspruch</u>: wie können lichtleitende Fasern stabil (dick) sein und gleichzeitig dünn (geringe Wärmeleitung)

<u>Abstand der Abstandsstege voneinander</u> (Dicke einzelner Lagen gering, vieler Lagen hoch)

<u>Widerspruch</u>: zur Verhinderung einer starken Einbeulung aufgrund des Vakuums sollen Stege nah beinander stehen, dies führt zu höherer Wärmeleitung (mehr Stege erforderlich)

- b) Angestrebte ökonomische Eigenschaften
 - ❖ Kosten < 2 mal konventionelles Wärmedämmpaket</p>
- c) Angestrebter Zeitplan
 - Projektskizze bis Ende 2010
- d) Erwartungsgemäße Neuartigkeit
 - Selbstevakuuierend
- e) andere Auswahlkriterien
 - veränderbare Transluzenz

Annex 4 12 / 13

6. Historie von Lösungsversuchen

- a) Vorangegangene Versuche der Problemlösung analysieren Dokumentation bereits durchgeführter Problemlösungsversuche.
 - Airogele
- b) Andere Systeme, die ähnliche Probleme beinhalten, analysieren einer zum aktuellen Problem ähnliche Situation.

Annex 4 13 / 13