

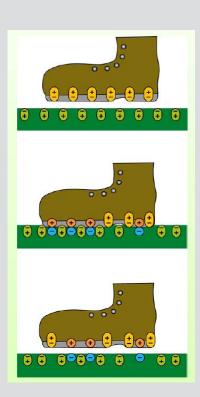
ANTISTATISCHE LACKE

FÜR

PARKETTFUSSBÖDEN DURCH IONISCHE FLÜSSIGKEITEN

Mag. Bettina Gruber

Vernetzungsworkshop Fabrik der Zukunft, 27. Oktober 2008



Ausgangssituation

- Fußböden im Wohnbereich neigen zur elektrostatischen Aufladung
- Reibungselektrizität entsteht beim Begehen
 - unangenehme Nebenerscheinung
 - insbesondere für Allergiker problematisch
- Chemische Verbindungen mit antistatischer Wirkung sind bisher nur begrenzt mit Lacksystemen verträglich und auswaschbar

- Entwicklung einer neuen Technologie, durch welche eine signifikante Reduktion der elektrostatischen Aufladung bei Parkettböden erzielt werden kann!
- Herstellung eines Lackes der folgende Eigenschaften aufweist:
 - Antistatisches Verhalten (Personenaufladung nach EN 1815 < 2 kV und der Oberflächenwiderstand nach EN 1081 < 10¹⁰ Ω)
 - **Maltbarkeit**
 - Pflegeleichtigkeit
- Nutzen:

-O _C -	Verbesserung de	es Wohlbefindens
-------------------	-----------------	------------------

- Dauerhafte Haltbarkeit
- Vereinfachung der Bodenpflege

Schnelle Härtung

Keine Verwendung von Lösemitteln

Gute chemische und mechanische Widerstandsfähigkeit

Vorgehensweise

Das Projekt gliedert sich in 2 Entwicklungsschritte:

- 1) Screening
- 2) Optimierung

Zu Abschnitt 1)

- Auswahl von geeigneten Ionischen Flüssigkeiten
- Synthesearbeiten
- 🚰 Herstellung von Proben zur Evaluierung
- **Ausprüfung**

Zu Abschnitt 2)

- Adaptierung, Optimierung der Lackformulierung, lacktechnische Ausprüfung
- Herstellung von Demonstrationsobjekten

(erwartete) Ergebnisse

NACHHALTIGwirtschaften

- Einige Verbindungen wurden identifiziert
- Erste Prototypen wurden erstellt
- Für kommerzielle Verwertung sind noch weitere Versuche erforderlich
- Die Basis für eine erfolgreiche Umsetzung ist aber gelegt!

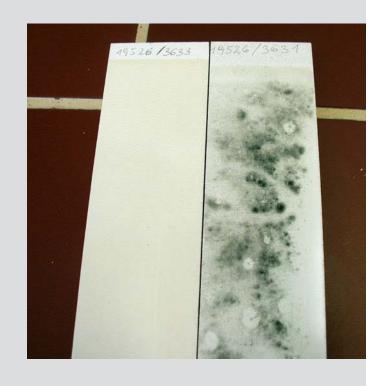


Abb: Die Wirkung der antistatischen Additive wurde auch mittels Staubtest eindrucksvoll geprüft

Projektbeteiligte

Projektleiter: Dr. Albert Keiler

ADLER WERK - LACKFABRIK

ProjektpartnerInnen:

- Institut f
 ür Allgemeine, Anorganische und Theoretische Chemie – a. O. Univ. Prof. Herwig Schottenberger
- trans IT Entwicklungs- und Transfercenter Universität Innsbruck GmbH

Endbericht (Schriftenreihe "Energie und Umweltforschung"): 08/2008

Kontakt: Dr. Albert Keiler und Dr. Albert Rössler

