

1MW BESS in the Swiss Distribution Grid Experience and visions

1MW BESS in the Swiss Distribution Grid Outline

- Introduction
- EKZ's 1 MW BESS system
- Lessons learnt

Advanced BESS control

Place and role of energy storage in power systems

Application landscape

Load leveling for generation utilization 10-100 MW, 1-4 h

Spinning reserve in case of line outage 10-100 MW, 0.25-1 h

> Frequency regulation 1-50 MW, 0.25-1 h

Integration of renewables 1-10 MW, 0.5-10 h

Residential energy mgmt 1-10 kW, 1-6 h

Integration of renewables 10-100 MW, 0.5-10 h

Load peak shaving 1-10 MW, 0.25-1 h

UPS and PQ for critical loads 1-10 MW, 0.1-0.25 h

Community energy mgmt 0.1-1 MW, 1-4 h

Place and role of energy storage in power systems

Application landscape

Load leveling for generation utilization 10-100 MW, 1-4 h

Spinning reserve in case of line outage 10-100 MW, 0.25-1 h

> Frequency regulation 1-50 MW, 0.25-1 h

Integration of renewables 1-10 MW, 0.5-10 h

Residential energy mgmt 1-10 kW, 1-6 h

Integration of renewables 10-100 MW, 0.5-10 h

Load peak shaving 1-10 MW, 0.25-1 h

Grid regulation has the lowest required discharge time

> **UPS and PQ for critical loads** 1-10 MW, 0.1-0.25 h

Community energy mgmt 0.1-1 MW. 1-4 h

Battery Energy Storage in a Distribution Grid Drivers

- EKZ is one of the largest power providers in Switzerland supplying around 10 per cent of the country's electricity consumption
- Gain experince with utility-scale energy storage and applications at the distribution grid level including business case analysis for:
 - Peak Shaving
 - Grid expansion deferral
 - Safety margin reduction in grid planning
 - Minimize demand charges
 - Voltage regulation
 - Integration of decentralized generation
 - Improvement of power quality for critical loads
 - Frequency regulation
 - Islanding capability
 - Microgrids
 - UPS for critical loads

EKZ 1 MW BESSSystem Overview

EKZ 1 MW BESS System Components

Battery modules

SCADA

Battery container

EKZ 1 MW BESS System Properties

Property	Value	Notes
Power	1 MW	charging and discharging
Capacity	580 kWh	250 kWh @ 1 MW
System Integrator	ABB	
Battery Manufacturer	LG Chem	
Cell Type	Li-Ion	
Number of Cells	10368	
Lifetime ¹	3500 Cycles	2 Cycles/day, 250 kWh
System Costs ²	~2 Mio EUR	~500k Battery

¹Warranty, real lifetime most likely higher.

Source: EKZ

² Reflecting costs of procurement in 2011

Projected Cost Reductions of Li-ion Batteries (\$/kWh)

Lessons learnt Efficiency during two years of operation

Source: EKZ

Components

- Battery: round trip 90 95% (higher at low power rates)
- Inverter: one way 97% (lower at low power rates)

System

- Cycle with 50% DoD at 50% rated power (±500 kW, 30 min each)
- Round trip w/o auxiliary: 90%
- Round trip with auxiliary: 85%
- Real life efficiency is strongly dependent on power profile (i.e. use case)

Frequency regulation A bastion of system stability

- TSOs have the task of keeping the equilibrium between electricity generation and demand at all times
- To do so a TSO needs different types of frequency control reserve which differ according to the principle and speed of activation
- The fastest reserve is automatically called immediately after an incident of frequency deviation
 - ✓ E.g. in CE ENTSO-E zone an activation time for a full amount of primary reserve is 30 sec

Primary Frequency Regulation in Switzerland Ancillary service market

- As TSOs do not posses any power plants of their own they invite tenders from independent power suppliers
- The control power market has been created in Switzerland in 2009
- A supplier of a frequency regulation reserve is paid as bid based on provided capacity in MW

Primary Frequency Regulation BESS advantages and disadvantages

- BESS Advantages:
 - Fast reaction time (ramp rate)
 - Double regulation range
- BESS Disadvantage
 - Limited storage capacity for economic reasons
- Control of SoC should be made simultaneously with application control

Source: EKZ

Frequency Regulation Example of performace based reward introduction

- Some stakeholders have argued about unjust and unreasonable remuneration schemes for fast ramping units
- FERC Order 755 requires RTOs and ISOs to compensate fast reacting frequency regulation resources by adding a performance reward (accuracy of following the dispatch signal) to the standard capacity based payment

Source: Beacon Power

SoC Control Typical «reactive» strategy

- Control strategy:
 - Battery discharge time: 15 min
 - SoC contol by additional charge/ discharge within ±10 mHz tolerance band with 5% of rated power

Results:

 Battery size is not sufficient to provide f control service. SoC goes out of limits several times per month

Conclusions:

- Low recharge power requires large battery (few hours)
- To decresre the battery size a recharge and discharge rate must be higher

SoC Control Potential future «pro-active» strategy

- Predict frequency behavior and estimate SoC trajectory based on historic data
- Discharge/recharge battery by selling/buying required amount of energy on the intra-day electricity market
- Current market rules in Germany:
 - bid submission latest 45 min prior the physical delivery
 - Delivery interval is 15 min or 60 min
- Not yet implenented in EKZ BESS

SoC Control Example of SoC forecast

SoC predictor implemented using GM(1,1) (grey model one dimension first order)

SoC Control Monthly intraday market energy throughput

SoC Control Monthly SoC profile

Conclusions in a nutshell

- Different applications have been running at EKZ's
 1 MW BESS and the system was fully capable to run them
- We keep investigating and improving all applications
- We have understood a need for advanced BESS control algorithms capable to predict a future system state and pro-actively take grid friendly actions to manage optimal SoC
- Regulatory framework should be changed in order to provide an adequate reward for fast and precisely reacting units

Power and productivity for a better world™

