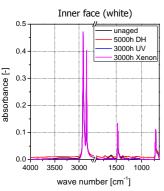
Degradation behavior and reliability of a novel multi-layer polyolefin backsheet film 3M™ ScotchShield™ 800 for PV encapsulation

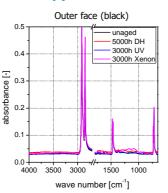
G. Oreski¹, W. Schoeppel²

Polymer Competence Center Leoben (PCCL), Roseggerstraße 12, 8700 Leoben, Austria – oreski@pccl.at ² 3M, Carl-Schurz-Straße 1, 41453 Neuss, Germany – wschoeppel@mmm.com

Polymer Competence Center Leoben

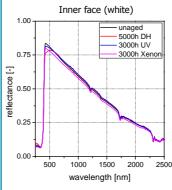
Introduction and Objectives

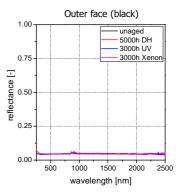

- Increasing cost pressure led to significant R&D efforts in order to find effective alternatives to fluoropolymer containing backsheets
- 3M[™] ScotchShield[™] 800, based on multi-layer polyolefin technology, offers an alternative and cost effective option for PV module manufacturers
- → Determination of the material behavior after exposure to relevant load parameters temperature, humidity and ultraviolet

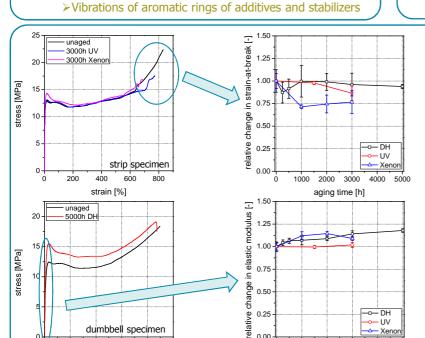

Accelerated weathering

Test	Phases	Irradiance	Temperature	Humidity
Damp heat (DH) IEC 61215	-	-	85 °C	85 % RH
Xenon ISO 4892-2 Method A Cycle 1	Phase 1: 102 min dry Phase 2: 18 min water spray	Xenon arc lamp 60 W/m ² between 300 und 400nm	65 °C	50 % RH
ISO 4892-3 Method A Cycle 1	Phase 1: 8 h dry Phase 2: 4 h condensation	UVA340 fluorescent lamp Phase 1: 0,76 W m ⁻² nm ⁻¹ at 340nm Phase 2: light off	Phase 1: 60 °C Phase 2: 50 °C	Not controlled

Results: Aging characterization


IR-ATR spectroscopy




- No significant changes in characteristic polyolefin absorbance spectra due to chemical aging during accelerated weathering
 - > Formation of small peaks around 1720 cm⁻¹ and between 1300 and 1000 cm⁻¹
 - ➤ Carbonyl groups
 - ➤ Slight changes in the region between 1700 and 1500 cm⁻¹

UV/Vis/NIR spectroscopy

- No significant changes in reflectance spectra due to chemical aging during accelerated weathering
 - > Slight discoloration of inner face after damp heat testing
 - Formation of chromophoric groups due to chemical
 - > No significant changes in the UV region of wavelength
 - > Effective UV protection also after weathering

Tensile test

- Material exhibits ductile behaviour with high plastic deformation and strain hardening after the yield point
- Scattering in strain-at-break and stress-at-break values presumably due to the laboratory co-extrusion process
- No significant changes in ultimate mechanical properties after damp heat testing
 - > No effects of chemical aging observable
 - → Materials used in the backsheet film are not susceptible to hydrolysis
 - → Temperature level of 85 °C to low to induce thermo-oxidation
- > Slight changes in ultimate mechanical properties after exposure to UV radiation
 - > Chemical aging
 - > Stronger decrease after xenon weathering, presumably due to the higher specimen temperature during exposure
- > Slight increase in elastic modulus and yield strength after damp heat and xenon test
 - Physical aging
- > No delamination effects after weathering

Conclusion

100 150

strain [%]

- No significant chemical aging effects were observed for the polyolefin multi-layer film → Excellent long term weathering stability estimated
- 3M™ ScotchShield™ 800 film offers a high potential as a backsheet for PV modules

4000 5000

2000 3000

aging time [h]