











### → Impact Assessment Smart Metering Schweiz Vortrag anlässlich der Smart Grids Week Bregenz

**Dr. Thorsten Staake**Bits to Energy Lab, ETH Zürich

Bregenz, 23. Mai 2012



- Vorstellung Bits to Energy Lab und Konsortium
- Vorgehensweise beim Impact Assessment
- Resultate und Empfehlungen



- Vorstellung Bits to Energy Lab und Konsortium
- Vorgehensweise beim Impact Assessment
- Resultate und Empfehlungen

# Das Bits to Energy Lab ist eine Forschungsinitiative der ETH Zürich und der Universität St. Gallen



- Informationsmanagement
   (E. Fleisch, ETH Zürich, lead)
- Distributed Systems Group (F. Mattern, ETH)
- Technologiemanagement
   (E. Fleisch, Universität St. Gallen)











### Wir entwickeln und erproben Energiedienstleistungen, die auf Verbrauchsdaten basieren









- Erfassung von verhaltensrelevantenDaten
- Data Analytics

- Interventionen ableiten (automatisiert oder verhaltensbezogen)
- Wirkung bewerten

- Umsetzung für Forschungszwecke
- Transfer in die Praxis mit Unternehmen



### Dabei arbeiten wir eng mit unseren Partnern zusammen und streben einen Transfer in die Praxis an





























### Mitglieder des Konsortiums und der erweiterten Projektgruppe

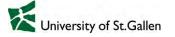



















- Vorstellung Bits to Energy Lab und Konsortium
- Vorgehensweise beim Impact Assessment
- Resultate und Empfehlungen







# Das B2E Lab hat mit mehreren Partnern das «Impact Assessment Smart Metering» für die Schweiz durchgeführt



#### Ziel: Untersuchung Kosten / Nutzen unterschiedlicher Smart-Metering-Einführungsszenarien

- Beurteilung möglicher Szenarien hinsichtlich deren wirtschaftlicher, sozialer und ökologischer Kosten und Nutzen
- Darstellung der Verteilung von Kosten und Nutzen zwischen den Akteuren
- Primärer Betrachtungshorizont: 2015-2035
- Entwicklung hin zu einem "Smart Grid" (soweit möglich) berücksichtigen, aber klarer Fokus auf Stromzähler für den Masseneinsatz







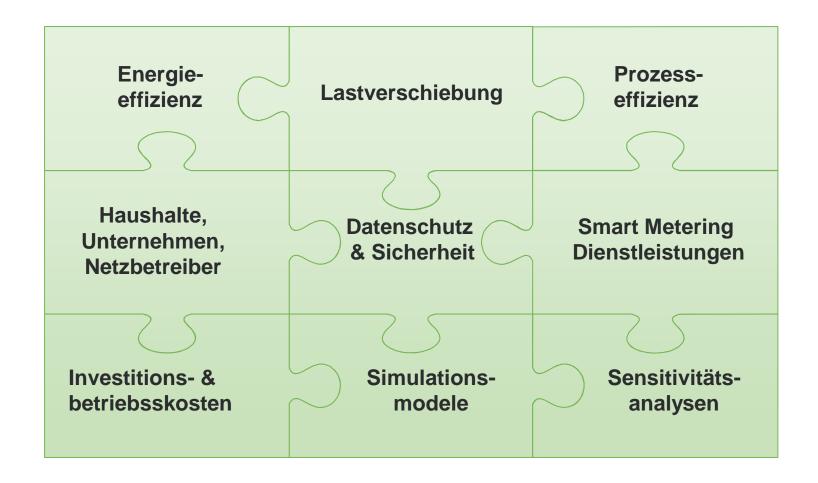






- Bits to Energy Lab: Evaluation Smart Meter Projekte, Szenarien-Entwicklung, Datengrundlage für Kosten und Nutzen, Energieeffizienzgewinne
- ECOPLAN: Dynamische Kosten-Nutzen-Bewertung, Wechselhäufigkeit und Reduktion Marktmacht, volkswirtschaftliche Auswirkungen
- ENCO: Lastkurven und Lastverschiebungspotentiale für Haushalte, Elektromobilität
- Weisskopf: Lastkurven und Lastverschiebungspotentiale für Industrie
- Vischer: Rechtliche Beurteilung
- Consentec: Auswirkungen Netze
- EWL: Auswirkungen Erzeugerseite
- Bundesamt für Energie: Kontinuierliches Review von Zwischenergebnissen


























- 1. Status quo
- 2. Status quo +
- 3. Selektive Einführung
- 4. Flächendeckende Einführung
- 5. Flächendeckende Einführung +

- Anzahl Smart Meter
- Auflösung der Messdaten
- Anforderungen an die Kommunikationsinfrastruktur
- Angebot von energienahen
   Produkten und Dienstleistungen







## Status quo dient als Referenz, Status quo+ unterstellt moderat zunehmende Energieeffizienzbemühungen



#### 1) Status quo

- Keine Einführung von Smart Metering
- Bestehende Infrastruktur wird weiterhin genutzt
- "Business as usual" bezüglich des Angebotes von Effizienzkampagnen und energienahen Dienstleistungen

#### 2) Status quo + (zusätzlich)

- Durchführung von Effizienz-Kampagnen und Versand von Kundenschreiben, die Haushalte zu Energieeffizienz motivieren, jedoch keinen Smart Meter voraussetzen
- Optimierte Nutzung der bestehenden Rundsteuerung









### Im Szenario Selektive Einführung unterstellen wir die Ausstattung mit SM bei Kundenwunsch



#### 3) Selektive Einführung

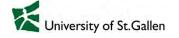
- **20%** der Messpunkte werden mit **Smart Metering** ausgestattet
- Wechsel auf Smart Metering erfolgt auf Kundenwunsch
- Zielwert von 20% wird ca. 2030 erreicht
- Aufbau einer flächendeckenden, Smart-Metering-tauglichen Infrastruktur, um den Kundenwünschen zu entsprechen
- Angebot von **zeitvariablen Tarifen** (mehr als zwei Stufen)
- Lastmanagement im Wärmebereich (Warmwasser und Wärmepumpen)









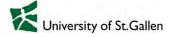

### Im Scenario *Flächendeckende Einführung* gehen wir von einer Ausstattung von 80% aller Messpunkte



#### 4) Flächendeckende Einführung

- Rollout von 400'000 Smart Meters pro Jahr
- 80% Abdeckung in 2025
- Aufbau einer Smart-Meteringtauglichen Infrastruktur
- Angebot von zeitvariablenTarifen
- Lastmanagement im Wärmebereich

- <u>5) Flächendeckende Einführung +</u> (zusätzlich)
- Angebot von dynamischen Tarifen
- Datenerfassung und -kommunikation im 15-Minuten-Intervall
- Lastmanagement für einige Haushaltsgeräte als Option (Waschmaschine, Trockner, etc.)










- **Vorstellung Bits to Energy Lab und Konsortium**
- **Vorgehensweise beim Impact Assessment**
- Resultate und Empfehlungen







### Direkte Mehr- und Minderkosten im Vergleich zum Szenario "Status Quo"



#### (Vorläufige Ergebnisse zur Verdeutlichung der Grössenordnungen)

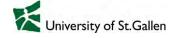
| Kostenart                | Flächendeckende Einführung           |
|--------------------------|--------------------------------------|
| alle Angaben in NBW 2015 | Differenz zum Status Quo in Mio. CHF |










## Indirekten Kosten/Nutzen... (am Beispiel "neue Energiepolitik")



#### (Vorläufige Ergebnisse zur Verdeutlichung der Grössenordnungen)

| "Neue Energiepolitik"                  | Flächendeckende<br>Einführung |
|----------------------------------------|-------------------------------|
| alle Angaben in NBW 2015<br>(Mio. CHF) | Differenz zu<br>Status quo    |
| Netzkosten                             | -                             |
| Konsumentenrenten                      | ~ 2'000                       |
| - Privathaushalte                      |                               |
| - Dienstleistungen                     |                               |
| - Gewerbe                              |                               |
| Produzentenrenten                      |                               |
| Total indirekte Kosten/Nutzen          |                               |









### Lastverschiebungspotenzial und Stromeinsparung durch Smart Metering



- Relativ grosses Lastverschiebungspotenzial durch Smart Metering ca.
   10% heutiger Endkonsumentenlast
- Stromeinsparung relativ bescheiden
   ca. 1.8% bei flächendeckendem Roll-Out

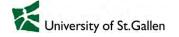
#### Weshalb ist Stromeinsparungen nicht grösser?

- Nicht alle Kunden reagieren sensitiv auf Verbrauchsinformationen / Strompreissignale
- Keine Einsparwirkung bei Grossverbraucher







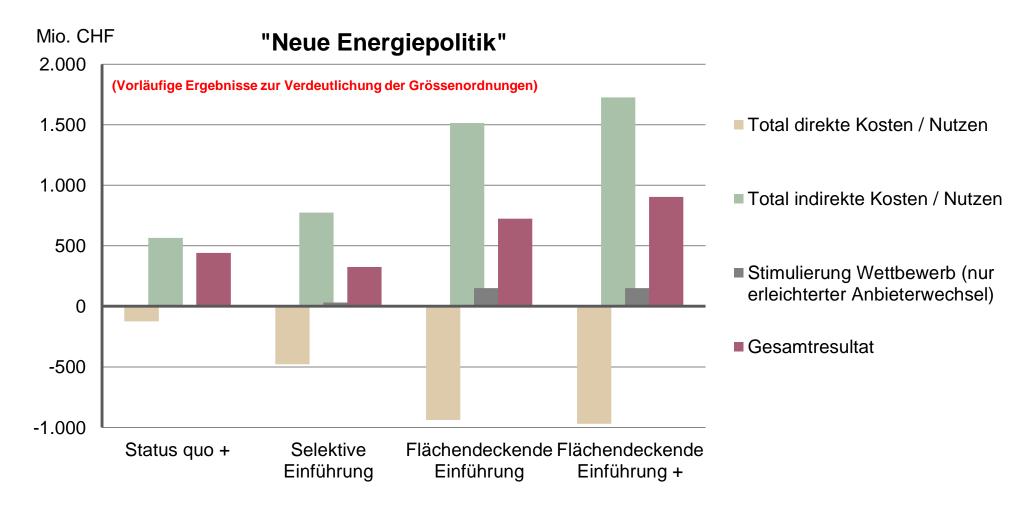



### Die wichtigsten Punkte zu den indirekten Kosten/Nutzen



- Lastverschiebungspotenzial relativ gross Nutzen aber klein
- Stromeinsparung relativ gering Nutzen aber gross
- Die erzeugungsseitigen Nutzen kommen in erster Linie den Schweizer Strom-Endkonsumenten zugute









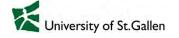

### Die Gesamtresultate für die verschiedenen Einführungsstrategien (exkl. Makroeffekte)









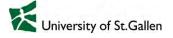







- → Flächendeckende Einführung aus volkswirtschaftlicher Sicht sinnvoll
- → Mehrkosten von 1 Mrd. CHF stehen Stromeinsparungen von 1.5 bis
   2.5 Mrd. CHF beim Endkunden gegenüber
- → Positive Impulse für die Wirtschaft
- → In erster Linie profitieren Endkunden von einer Einführung von Smart Metern
- → Mehrkosten für Netzbetreiber und Stromlieferanten
- «Split Incentives» erfordern Anreizregulierung





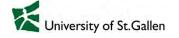







- → Möglichst freier Rollout-Plan für Netzbetreiber über 10 Jahre
- → Minimale funktionale Anforderungen an Smart Meter sollten festgelegt werden
- → Standardisierung der wichtigsten Schnittstellen für die Verhinderung von Lock-In-Effekten z.B. beim Wechsel des Stromanbieters










- → Smart Meter sind «Enabler» für Energieeinsparungen. Kombination mit Anreizmechanismen für Realisierung erforderlich (Seitens der EVUs und der Kunden)
- Zugang zu Messdaten diskriminierungsfrei für Konsumenten, Netzbetreibern und Lieferanten
- → Die Messdaten Daten bilden die Grundlage für Energiedienstleistungen. Daher deren Verwendung nicht «per Default» verhindern
- → Smart Meter fördern die Entwicklung eines Smart Grids und sind daher von Bedeutung für die Energiestrategie 2050



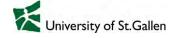











#### Wir suchen gute Informatiker!

3'000 CHF als Dankeschön für die Empfehlung von Kandidaten, die die Probezeit überstehen.

#### Kontakt:

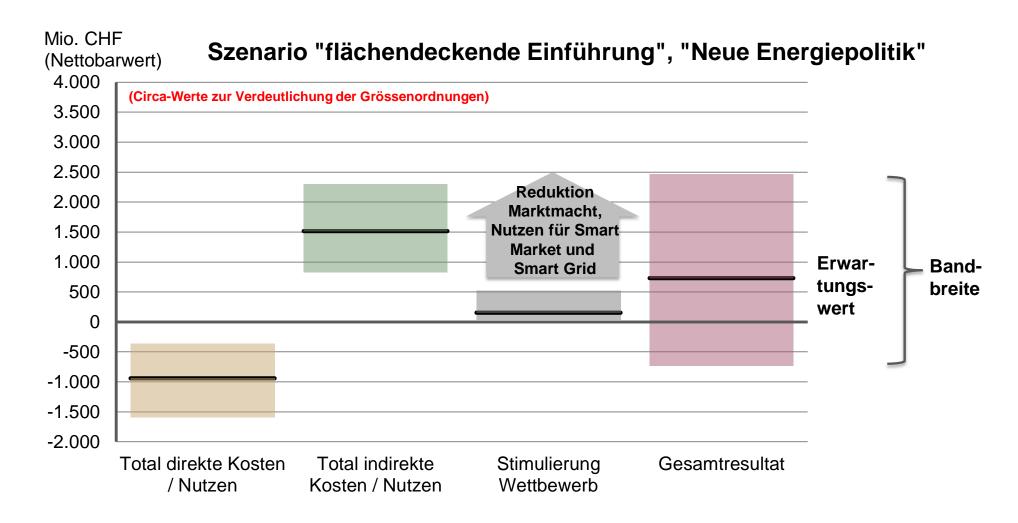
Thorsten Staake | Bits to Energy Lab | Information Management Department Management, Technology, and Economics | ETH Zürich Office: + 41 44 632 38 45 | E-Mail: tstaake@ethz.ch



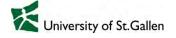











# Unsicherheiten bei der Analyse (exkl. Makroeffekte)











