The Clean Energy Ministerial and ISGAN U.S. Department of Energy Perspectives

Smart Grids Week – Linz 2011

Russ Conklin

U.S. Department of Energy
Office of Climate Change Policy and Technology
25 May 2011

Outline

 DOE Perspective on Smart Grid Clean Energy Ministerial **ISGAN** DOE Activities and Tools

Smart Grid – A National Priority

- "It is the policy of the United States to support the modernization of the Nation's electricity [system]...to achieve...a Smart Grid."
 U.S. Congress (Energy Independence and Security Act of 2007)
- "We'll fund a better, smarter electricity grid and train workers to build it..."

President Barack Obama

 "A smart electricity grid will revolutionize the way we use energy..."

Secretary of Commerce Gary Locke

Why Smart Grid?

The National Academy of Engineering (U.S.) called electrification the greatest engineering achievement of the 20th century...

"To meet the energy challenge and create a 21st century energy economy, we need a 21st century electric grid..."

Secretary of Energy Steven Chu

What is a 21st Century Electric Grid?

20th Century Grid

- **Production Follows Demand**
- Largely Electromechanical
- High Carbon / Low Storage
- Blind to Distribution & Demand
- Very Little Information and Control
- Central Planning, Design and Operation

21st Century Smart Grid

- Information Rich
- Distributed Design and Operation
- Clean Tech Priority
- **Ubiquitous Storage**
- **Automated Operations**
- Highly Differentiated Energy Services

DOE Identifies Seven Core Smart Grid Characteristics...

Integration of All **New Markets and** Customer Generation and **Operations Participation Storage Options** Asset **Power Quality for Optimization and** Self-healing **Operational** 21st Century **Efficiency Resilient Against** Attacks and

... And develops and implements advanced information, communication, and control technologies, along with supportive policies, to achieve all seven.

Disasters

Mapping of Smart Grid Assets (Components), **Applications, and Technology Areas**

Two Gigatonnes of CO₂ Per Year!

Deployed globally, smart grids have the potential to help reduce global CO, emissions by over 2 gigatonnes per year by 2050

- Direct Reductions: Energy savings from peak load management, continuous commissioning of service sector loads, accelerated deployment of energy efficiency programs, reduced line losses, and direct feedback on energy usage
- Enabled Reductions: Greater integration of renewables and facilitation of EV and PHEV deployment

Outline

Growing International Engagement on Smart Grid

Worldwide efforts:

• e.g., The International Smart Grid Action Network and the Clean Energy Ministerial

Regional efforts:

e.g., APEC Smart Grid Initiative

Bilateral agreements:

e.g., US-EU Energy Council Working Groups on Technology and Policy

...and more

L'Aquila (IT) -**Major Economies Forum on Energy and Climate (MEF)**

- Global Partnership for low-carbon and climate-friendly technologies
- Technology Action Plans: 10 technologies, 80% CO₂ reduction potential

Copenhagen (DK) -Public release of Tech. Action Plan on Smart Grids

- Led by IT and KR (with support from U.S.)
- www.majoreconomiesforum.org
- Menu of options to accelerate deployment
- Promotes multilateral partnership on Smart Grids ISGAN

Washington, DC (USA) First Clean Energy Ministerial (C.E.M)

- Energy Ministers from 23 Countries + EC
- Collaborate on policy and programs that accelerate the world's transition to clean energy technologies
- Goal is action policy and program collaboration

The Clean Energy Ministerial Vision

The CEM's goal is action!

Policy and program collaboration, driven from the highest levels, to accelerate the world's transition to clean energy technologies

- "Distributed leadership" model.
- Concrete, transformative clean energy initiatives led by groups of like-minded and willing countries are the "deliverables."
- No expectation that every government join every action.
- No communiqué or other negotiated text.

The first CEM took place on 19-20 July 2010 in Washington, DC, USA.

The second CEM took place on 6-7 April 2011 in Abu Dhabi, UAE.

The third, fourth, and fifth CEMs will take place in 2012, 2013, and 2014 in the UK, India, and Korea, respectively.

The First Clean Energy Ministerial (CEM1) — July 2010

>70% of global GDP

> 80% of global GHG emissions

11 Clean Energy Initiatives Launched at CEM1

Bioenergy Working Group

Carbon Capture Use and Storage Action Group

Clean Energy Education and **Empowerment** Women's Initiative

Clean Energy **Solutions Centers**

Electric Vehicles Initiative

Global Superior Energy **Performance Partnership**

International **Smart Grid Action Network**

Multilateral Solar and Wind Working Group

Solar and LED **Energy Access Program**

Super-Efficient Equipment and Appliance Deployment Initiative

Sustainable **Development of Hydropower** Initiative

Global Energy Efficiency Challenge

GRIDS

International Smart Grid Action Network (ISGAN)

APPLIANCES

 Super-efficient Equipment and Appliances Deployment (SEAD)

BUILDINGS AND INDUSTRY

 Global Superior Energy Performance (GSEP)

ELECTRIC VEHICLES

Electric Vehicles Initiative (EVI)

CAPACITY BUILDING

Clean Energy Solutions Centers

Outline

International Smart Grid Action Network (ISGAN)

A mechanism for bringing high-level government attention and action to accelerate the development and deployment of smarter electricity grids around the world.

ISGAN...

- Facilitates dynamic knowledge sharing, technical assistance, peer review and, where appropriate, project coordination
- Sponsors activities that accelerate smart grid deployment and address knowledge gaps
- Builds on the momentum of and knowledge created by the substantial investments being made in smarter grids globally
- Fulfills a key recommendation in the Smart Grids Tech. Action Plan
- Leverages cooperation with the International Energy Agency,
 Global Smart Grid Federation, and other relevant stakeholders

ISGAN Scope

- Five key topic areas
- Core emphasis on sharing of knowledge and lessons learned
- Projects may cover several topics areas

ISGAN Structure

As of April 2011, ISGAN is formally established as an Implementing Agreement (IA) under the IEA umbrella.

- First Executive Committee meeting in Seoul, Korea June 2011
- Interim Secretariat at Korea Smart Grid Institute

ISGAN by the Numbers:

14 Countries

Have Signed the IA (including all D-A-CH)

1 Other

Country Eligible to Sign

5 Other **Countries**

Currently **Participate**

Plus Expressions of Interest

from Brazil, Greece, Ireland, Turkey, etc.

Four Foundational Projects

 "Global Smart Grid Inventory" of enabling programs and policies

Smart Grid Case Studies using a common framework and metrics

Benefit/Cost Methodologies (bottom-up & top-down) and related policy toolkits to assess smart grid investments

 Synthesis of Insights for **High-level Decision Makers** (e.g., CEM Ministers) from ISGAN and other related projects

- Recognized that ISGAN is not the only entity developing an "inventory"
- Several such efforts underway regionally
 - ENARD Annex V
 - ASGI
 - EEGI
 - EC JRC (Setis)
 - Etc.
- Although different drivers for each, there are opportunities for cooperation
 - Met earlier this week at **BMVIT** in Vienna

Others Projects and Collaboration Proposed or Under Consideration

Smart Grid International Research Facility Network (SIRFN)

Coordination with the ENARD IA

(Electricity Networks, Analysis, Research & **Development**)

Engagement with other international efforts

(eg, the US-EU Energy Council and **APEC Smart Grid Initiative)**

Continuing dialogue with private sector and other stakeholders

(eg, Global Smart Grid Federation, ADB, SGIP)

Joint Projects with the DSM IA

Outline

 DOE Perspective on Smart Grid Clean Energy Ministerial **ISGAN DOE Activities and Tools**

Department of Energy Action at Home

American Recovery and Reinvestment Act

 One-time public investment in commercial applications and demonstrations of near-term technology

On-going Smart Grid R&D Program

Sustained public investment in smart grid innovations

Inter-agency Coordination

Smart Grid Subcommittee and Task Force

Recovery Act: \$4.5 Billion in One-time Funding for Grid Modernization

Source: www.energy.gov/recovery

Recovery Act: Smart Grid Investment Grants

(99 projects: \$3.4B Federal; \$4.4B non-Federal)

Smart Grid Systems and Equipment	Numbers of Units (self-reported estimates)	Improvements	Impacts	
Networked Phasor Measurement Units	877	 Near-nationwide coverage 6X the 166 existing networked PMUs 	Enhanced situational awareness and electric	
Smart Transformers	205,983	Enables preventative maintenance	system reliability and resiliency	
Automated Substations	671	• 5% of 12,466 transmission and distribution substations in U.S.		
Load Control Devices	176,814	Enables peak demand reductions	1444 MWs of peak demand reduction per year	
Smart Thermostats	170,218	Enables peak demand reductions	(self-reported estimates)	
Smart Meters	18,179,912	• 13% of the 142 million customers in the U.S.	Transformational changes in consumer behavior and	
In-Home Display Units	1,183, 265	Enables customer empowerment	energy consumption	
PHEVs / Charging Stations	12 / 100	Accelerates market entry	Begins the path toward energy independence	

Recovery Act: Smart Grid Regional Demonstrations

(\$435M Federal; \$877M non-Federal)

16 Awards Support Projects in 21 States ND SD co KS OK

- Demonstrate cutting edge SG technology (including integration of renewables)
- Prove ability/ ease to replicate
- Show benefits (with actual data)
- Validate business models
- Address regulatory and scalability issues

Recovery Act: Smart Grid Workforce Training

(\$100M Federal; \$95M non-Federal)

- Training and development programs to help prepare the next generation of workers for smart grid-related jobs.
- Almost \$100 million for 54 projects.
- Leverages more than \$95 million in funding from community colleges, universities, utilities, and manufacturers
- Will both develop curricula and training programs and help train approximately 30,000
 Americans to transform the nation's electrical grid and implement smarter grid technologies in communities across the country.

Recovery Act: Accelerating SG Interoperability

Through close work with DOE and over 600 stakeholders, the **NIST Smart Grid Interoperability Standards Program has:**

- Released NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0
- Released Guidelines for Smart Grid Cyber Security
- Launched the Smart Grid Interoperability Panel (SGIP) to provide a forum for collaboration with the private sector – now 1,750 members from 634 organizations

Tracking Performance and Determining Impacts

DOE will report deployment metrics quarterly:

- Number of smart meters deployed
- Number of distribution circuits with automated equipment
- The portion of the transmission system visible with synchrophasor technology

Program-Level Reporting

21 ARRA Smart Grid Projects reported build metrics for the Q3 reporting period (cumulative)

DOE will report impacts semi-annually with emphasis on:

- Peak demand reduction
- O&M cost reductions
- Reliability improvements (T&D)
- System efficiency improvements (T&D)
- Possible greenhouse gas reductions And developing a business case framework with stakeholders

Peak Demand Reduction

Understanding the Impact of AMI and Dynamic **Prices on Consumer Behavior**

Ten statistically rigorous studies will be conducted to:

- Identify factors influencing customer acceptance of dynamic electricity rates and AMI technology
- Quantify effect of dynamic rates on electricity consumption (peak and overall load reduction)
- Understand relative and combined contributions of pricing, information feedback, and control technology on consumer behavior
- Provide statistically relevant data with analysis to researchers and decision-makers

	Technology Option					
Pricing Strategy	Web Portal	In-Home Display (IHD)	Programmable Communicating Thermostat (PCT)	All Technology Options		
Variable Peak Price (VPP)	Treatment 1	Treatment 2	Treatment 3	Treatment 4		
TOU Critical Peak Price (CPP)	Treatment 5	Treatment 6	Treatment 7	Treatment 8		
Control Group	Control Group					

OG&E expects to avoid building two 165 MW peaking units based on achieving a 20% customer participation rate (on opt-in basis)

Oklahoma Gas and Electric (OG&E) is undertaking a 2-yr study with 4,600 residences and 650 small businesses to determine load reduction resulting from combinations of dynamic rates and enabling technologies

DOE Smart Grid R&D Program: Vision

(from Multi-Year Program Plan, 2010-2014)

- By 2030, the power grid has evolved into an intelligent energy delivery system that supports plug-and-play integration of dispatchable and intermittent low-carbon energy sources, and provides a platform for consumer engagement in load management, national energy independence, innovation, entrepreneurship, and economic security.
- This smart grid supports the best and most secure electric services available in the world and connects everyone to abundant, affordable, high quality, environmentally conscious, efficient, and reliable electric power.

DOE Smart Grid R&D Program

On-going support for smart grid innovation

R&D Areas:

- Standards & Best Practices
- Technology Development
 - renewable and distributed systems integration
 - microgrids
 - advanced communications & controls
- Modeling
- Analysis
- Evaluations & Demonstrations

Distribution Systems

Customer Solutions

Focusing on

Interfaces & Integration with Transmission & Generation Systems

Plus, additional DOE investments in energy storage, cyber security, and clean energy transmission and reliability

Inter-agency Coordination: Federal Smart Grid Task Force

To ensure awareness, coordination, and integration of the diverse smart grid activities in the Federal Government

Functions

- ✓ Serves as Federal focal point on all things "smart grid"
- ✓ Coordinates and integrates intergovernmental activities
- ✓ Oversees report production for submission to Congress
- ✓ Collaborates on interoperability framework
- ✓ Guides ARRA investments in smart grid
- ✓ Ensures awareness of Federal smart grid activities
- ✓ Collaborates with and supports the **Electricity Advisory Committee**

Website

www.oe.energy.gov/smartgrid taskforce.htm

✓ Charter

- ✓ Presentations
- ✓ Publications
- ✓ Fvents

Inter-agency Coordination: Smart Grid Subcommittee

In July 2010, the (U.S.) National Science and Technology Council established the Smart Grid Subcommittee, which will:

- Articulate a vision for smart grid technology and the core priorities and opportunities for development of the smart grid
- Facilitate a strong, coordinated effort across federal agencies to develop smart grid policy
- Develop a framework for administration policy related to the smart grid that will be described in a public report
- Complement the existing Federal Smart Grid Task Force, which coordinates existing federal smart grid activities

U.S. Smart Grid Information Resources and Tools

- Smart Grid System Report
- Smart Grid Metrics for Measuring Progress
- Smart Grid Maturity Model
- Smart Grid Information Clearinghouse
- SmartGrid.gov
- Smart Grid -Introduction and Stakeholder books

Applying Metrics to Indicate Smart Grid Progress

Smart Grid System Report, a DOE report to Congress

- Biennial updates of deployment progress for each metric
 - Penetration levels: nascent, low, moderate, high (for build metrics)
 - Maturity: nascent, mature, and trend (for value metrics)
 - Trending: declining, flat, growing at nascent, low, moderate or high levels
- First report published July 2009
 (report available at http://www.oe.energy.gov/smartgrid.htm)
- Second report under development

Mapping Metrics to Smart Grid Characteristics

Metric Name	Customer Participation	All Generation & Storage Options	New Products, Services, & Markets	Power Quality for the Range of Needs	Asset Optimization & Efficient Operation	Resiliency to Disturbances, Attacks, & Natural Disasters
	Farticipation	Options	Markets	or needs	Operation	Disasters
Dynamic Pricing						
Real-Time Data Sharing						
DER Interconnection						
Regulatory Policy						
Load Participation						
Microgrids						
DG & Storage						
Electric Vehicles						
Grid-responsive Load						
T&D Reliability						
T&D Automation						
Advanced Meters						
Advanced Sensors						
Capacity Factors						
G, T, &D Efficiency						
Dynamic Line Rating						
Power Quality						
Cyber Security						
Open Architecture/Stds						
Venture Capital						

Primary Emphasis Importance

Smart Grid Maturity Model (SGMM)

A management tool to help utilities benchmark smart grid development and share best practices

SGMM at a glance

8 Domains: Logical groupings of smart grid related capabilities and characteristics

6 Maturity Levels: Defined sets of characteristics and outcomes

175 Characteristics: Features you would expect to see at each stage of the smart grid journey

SGMM targets

NOTE: There is no "correct" target profile implied in the model; the optimal profile will vary by utility.

Utilities sets <u>strategic aspirations</u> by domain, for example:

	SMR	OS	GO	<u>WAM</u>	TECH	CUST	<u>VCI</u>	SE
	Strategy, Management	Organization & Structure	Grid Operations	Work & Asset Management	Technology	Customer	Value Chain Integration	Societal & Environmental
	& Regulatory	or orrestore	- Operations	management			og.uo	
5		T	his is whe	re we aspii	re to be i	n X years		
Л				4				
)				
3	3			/	3	3		
2		2	2		2		2	2
1		1						
0	0	Thi	s is where	e we are to	day	0		-0

Smart Grid Information Clearinghouse http://www.sgiclearinghouse.org/

- Platform for direct sharing and dissemination of relevant smart grid information around the world
- Smart grid project summaries (with focus on non-ARRA projects), use cases, and business cases for the U.S. and internationally
 - >200 smart grid projects in the U.S.
 - >50 smart grid projects overseas
 - >1,000 smart grid-related documents and multimedia

Smartgrid.gov

ARRA smart grid project summaries and other Federal program activities

Reporting of ARRA SGIG & SGDP projects (progress, metrics and benefits, consumer behavior studies) and provision of analysis results to the public Smart Grid Information Clearinghouse

Smart Grid Challenge for the Year Ahead

- Educate consumers, regulators, and other stakeholders on the need for and benefits of a smarter, modern grid
- Innovate to lower costs
 - Through investments in developing new and advanced technologies
- Integrate resiliency and security
 - Enhanced system flexibility, T&D automation, and cybersecurity
- Stimulate and implement partnerships
- Work with international partners to share best practices and learn from others

Thank you!

For more information on the Clean Energy Ministerial and ISGAN:

www.cleanenergyministerial.org

For more information on DOE smart grid activities:

- DOE Office of Electricity: www.oe.energy.gov
- Smart Grid: www.smartgrid.gov

Russ Conklin

Office of Climate Change Policy and Technology
U.S. Department of Energy
+1 (202) 586 8339 russell.conklin@hq.doe.gov

Additional Info

SGIG: AMI & Customer Systems

Number of SGIG projects offering individual dynamic pricing programs and enabling technologies

SGIG: Distribution Automation

SGIG: Transmission System

Smart Grids Week | Linz 2011

Why an ISGAN Implementing Agreement?

1

Provides proven model for engagement

2

Facilitates cooperation with the IEA Secretariat and other
 Implementing Agreements (reduce overlap and increase synergies)

3

Allows direct private sector participation if desired

4

Offers clear rules for engagement...

5

• ... But also flexibility to adjust to evolving needs and interests of the Participants