Smart grids and flexibility

Hugo Chandler, David Elzinga
International Energy Agency

Electricity Systems are in evolution

Smart SYSTEM

What can smart grids do?

SUPPORT SYSTEM FLEXIBILITY

- Activate demand side
- Optimise T&D asset use
- Accommodate all generation and storage options (inc. VRE)
- Enable new products, services and markets (e.g. EVs)
- Increase resilience / security (contingencies, congestion, attacks, natural disasters)
- Safeguard power quality

CO₂ benefits of smart grids

Direct reductions:

- Peak load management
- Modulation of service-sector loads
- Energy efficiency programs
- Reduced line losses
- Direct feedback on energy usage

Enabled reductions

- Integration of variable RE
- Enabled electric vehicles

Technology

- Commercial-scale demonstrations across sectors; smart appliances
- Global technology standards
- Integrate with existing electricity infrastructure

Policy Regulation

- Address changing system needs, acknowledge new technology
- Address system-wide, cross-sector barriers, cyber security issues
- Encourage smart consumers through best practice, price signals for response

Consensus

- Accelerate education of consumers and their advocates, utilities, regulators
- Develop business models addressing cost, security and sustainability

International Collaboration

- Share standards, technology, policy and business models
- Capacity-building in developing countries, tailored to context: rural electrification, island systems, and alternative billing approaches

System integration issues

Focus of the IEA's ongoing project *Grid*Integration of Variable
Renewables

WEO 450 Scenario electricity projections – EU

[Source: IEA World Energy Outlook 2010]

Variability is not new, but it does get bigger

Source: Western Wind and Solar Integration Study, GE Energy for NREL (2010)

VARIABILITY

FLEXIBILITY

Demand fluctuates

Variable renewable power plants

Unexpected
Outages occur

System context

bonet warker

System operation

Grid

Dispatchable generators

Demand Side

Storage

Interconnection

Demand response

What capacity is likely to be responsive to a real time price signal?

Is real time price available to the consumer (through *e.g.* smart grid)?

Are small (*i.e.* residential) consumers aggregated into larger block(s)?

FAST Method

Step 1: Identify flexible resources Dispatchable Storage Demand side Interconnection plant Step 2: are The power area they available? context Smoothing through Additional geographical and Step 3: what Existing flexibility needs flexibility needs from (demand, contingencies) VRE technology spread are the needs? variable renewables (assuming a strong grid) Step 4: line up need & resource **Optimise resource** /deploy additional

Snapshot of present penetration potentials

Conclusions

- Variability is not a showstopper
 - Flexibility is the antidote to variability
 - Flexible resources are greater than believed
 - Smart grid is a key enabler for their availability
- GIVAR III (through 2012) will:
 - Identify principals of good power market design
 - Study impact of VRE on the economic viability of flexible power plants, and system adequacy

Publication www.iea.org/publications

Contact hugo.chandler@iea.org david.elzinga@iea.org

Larger balancing areas means shared resources and less variability

Markets in the Eastern United States today and in 2024

Snapshot of present penetration potentials

Balancing costs appear to range from USD 1 – 7 per MWh at 20% wind, depending on region

Impact of variable renewables on output of conventional plants – a tough week

Integration studies to date

- Eastern Wind Integration and Transmission Study
- Western Wind & Solar Integration Study
- NERC: Accommodating High Levels of Variable Generation
- GE ERCOT study (Texas)
- Solar Integration Study for PSCo (Colorado)
- Avista Corporation Wind Integration Study
- Wind Integration Study for PSCo (Colorado)
- California ISO Integration study
- Minnesota Wind Integration Study

- UK ERC Costs and Impacts of Intermittency Study
- EWEA Large Scale Integration of Wind Energy
- DENA study (Germany)
- All Island Grid Study (Ireland)
- European Wind Integration Study

 Sri Lanka Wind Integration Study (forthcoming)

■ Multi-regional: IEA Wind Task 25

Key messages

- First off: little concern at **low shares**
- No one-size-fits-all definition of high share
- More flexible resources exist then commonly thought
 - Gas and hydro, but also coal, even nuclear in some cases
 - Demand response, interconnections, storage
- A strong, intelligent grid is critical
- Larger, liquid markets using forecasts are better
 - Balancing costs are likely to be lower
- But lost revenue may drive off key flexible plants
 - A flexibility incentive may be the solution
 - Power market (re)design will at the core of future work

T: Time of operation (instant when electricity is produced and consumed)

Uncertainty of net load at time T (MW)

Flexible resource held against uncertainty of net load at time T (MW)

O Net load at time T

Givar_Fig24

The flexible resource pyramid

There are 4 flexible resources

Dispatchable power plants

Demand side Response (via smart grid)

Energy storage facilities

Interconnection with adjacent markets

A biomass-fired power plant

residential

A pumped hydro facility

Scandinavian interconnections

	Area size (peak demand)	Interconnection (actual and potential)	N°. of power markets	Geographical spread of VRE resources	Flexibility of dispatchable generation	Grid strength
British Isles (GB and IR)			00	4		\
Mexico			8			\
Iberian Peninsula (ES and PT)		=	00		Δ M	+
Nordic Power Market					M	*
Denmark		+	0	*	\sim	*
NBSO area (of Canada Maritime	s)			*	\sim	*
Japan			10			\
US West (2017)		-	3			+
Island (generic)	•	-		*		*