

Energy research Centre of the Netherlands

Global PV research

preparing for impact

Wim Sinke

ECN Solar Energy, Utrecht University & European PV Technology Platform

Contents

- What is (needed for) very large-scale application of PV?
 - The challenge quantified
- Where are we?
 - State of the art in technology and market
- Visions, scenarios and roadmaps
 - Technology and implementation targets
 - About modules & systems, cost & price, kWp & kWh
- Approaches
 - The technology portfolio and corresponding R&D areas
 - Environmental and societal issues
- Outlook

Contents

- What is (needed for) very large-scale application of PV?
 - The challenge quantified
- Where are we?
 - State of the art in technology and market
- Visions, scenarios and roadmaps
 - Technology and implementation targets
 - About modules & systems, cost & price, kWp & kWh
- Approaches
 - The technology portfolio and corresponding R&D areas
 - Environmental and societal issues
- Outlook

Solar energy: the challenge quantified

Source: German Advisory Council on Global Change, 2003, www.wbgu.de (example scenario)

Typical specific requirements for TW scale use

- Electricity generation costs <<0.10 €/kWh
- → turn-key system price <1 €/Wp (now >2.5 €/Wp)
 - low-cost modules at high efficiency (typically 20~30+%)
 - or: very low-cost modules at moderate efficiency (typically 10~15%)
 - and: low-cost Balance-of-System (components + labor)
- Use of non-toxic, abundantly available materials and closed cycles
- 20 ~ 40+ years lifetime
- But:
 - also need *transition* technologies, to develop the market and to demonstrate scientific/technical and economic potential

Contents

- What is (needed for) very large-scale application of PV?
 - The challenge quantified
- Where are we?
 - State of the art in technology and market
- Visions, scenarios and roadmaps
 - Technology and implementation targets
 - About modules & systems, cost & price, kWp & kWh
- Approaches
 - The technology portfolio and corresponding R&D areas
 - Environmental and societal issues
- Outlook

World annual solar cell and module production

Source: PV Status Report 2010

World cumulative systems installations

Source: PV Status Report 2010

Cell & module technologies ("flat plate")

Commercial: wafer-based crystalline silicon

- monocrystalline (cut)
- multicrystalline (cut)
- ribbons

(2009: 82% of global market)

Commercial: thin films

- silicon
- copper-indium/gallium-diselenide (CIGS)
- cadmium telluride (CdTe) (2009: 18% of global market)

Pilot production and laboratory: emerging and novel technologies

- super-low-cost concepts (printed organic & inorganic, etc.)
- super-high-efficiency concepts (many approaches for full spectrum utilisation)

Cell & module technologies ("flat plate")

Commercial: wafer-based crystalline silicon

module efficiencies 13 ~ 19%

Commercial: thin films

module efficiencies 6 ~ 12%

<u>Pilot production and laboratory:</u> emerging and novel technologies

(various efficiencies)

Concentrator technology

Courtesy Andreas Bett FhG-ISE

- application form of choice for expensive (per m²) super high efficiency cells
- uses direct (i.e. not diffuse) sunlight:
 - requires sun tracking
 - mainly suited for sunbelt regions
- initially based on Si, now on III-V (GaAs-family) materials
- world record efficiency PV conversion: 42% for a triple-junction cell (Spectrolab, USA)
- system efficiency ≈25%, potential >40%

Technology shares in production (2009)

Contents

- What is (needed for) very large-scale application of PV?
 - The challenge quantified
- Where are we?
 - State of the art in technology and market
- Visions, scenarios and roadmaps
 - Technology and implementation targets
 - About modules & systems, cost & price, kWp & kWh
- Approaches
 - The technology portfolio and corresponding R&D areas
 - Environmental and societal issues
- Outlook

Visions, scenarios and roadmaps – examples

Greenpeace & EREC (2010) www.energyblueprint.info

Forschungs Verbund Erneuerbare Energien (2010) www.fvee.de

Visions, scenarios and roadmaps - examples

European Climate Foundation (2010) www.roadmap2050.eu/downloads.html

European Renewable Energy Council (2010)

Visions, scenarios and roadmaps- examples

International Energy Agency www.iea.org (2010)

New Energy Development Organisation www.pv-era.net/doc_upload/documents/
245 0108Japanese Roadmap PV2030plus.pdf (2009)

Visions, scenarios and roadmaps - examples

Today's actions for tomorrow's PV technology.

An Implementation Plan for the Strategic Research Agenda
of the European Photovoltaic Technology Platform

Photovoltaic Technology Platform

2010

2005

2007

Addressing enablers for large-scale deployment

2010

COST REDUCTION

volume

innovation

INTEGRATION

grid

+

built environment

market deployment

R&D + demonstration

Solar Europe Industry

Initiative (SEII)

PV system integration

smart grids & integration of other renewables

2020 and beyond

LARGE-SCALE DEPLOYMENT

&

INDUSTRY COMPETITIVENESS

Visions on implementation vary: global market share of PV according to Greenpeace/EPIA and IEA

PV electricity generation share for each scenario

Visions on implementation vary: EU PV market share according to 'SET for 2020'

Courtesy M. Lippert, **SAFT**

Share of demand by 2020

Views on cost reduction largely coincide: IEA PV Roadmap

Targets for residential sector		2008	all e	2030	2050
Typical turn-key system price (2008 USD/kW) *		6 000	ं व	1 800	1 200
Typical electricity generation costs (2008 USD/MWh)	2 000 kWh/kW	360		100	65
	1 500 kWh/kW	480	2 <u>0</u>	135	90
	1 000 kWh/kW	720	ice -	205	135
			S		
Targets for commercial sec	tor	2008	2020	2030	2050
Typical turn-key system price (2008 USD/kW)		5 000	2 250	1 500	1 000
Typical electricity generation costs (2008 USD/MWh)	2 000 kWh/kW	300	130	\{	55
	1 500 kWh/kW	400	175	whole	75
	1 000 kWh/kW	600	260	<u> </u>	110
				Sa —	
Targets for utility sector		2008	2020	e e	2050
Typical turn-key system price (2008 USD/kW) **		4 000	1 800	Q)	
Typical electricity generation costs (2008 USD/MWh)	2 000 kWh/kW	240	105	Ö	
	1 500 kWh/kW	320	140	prices	
	1 000 kWh/kW	480	210		

Views on cost reduction largely coincide: EU PV TP Implementation Plan

Rounded, indicative figures	1980	1995	2009	2020	2030	Long term potential
Typical turn-key system price (2009 €/Wp)	>30	10	3 - 4.5*)	1.5 - 2.3	<1	0.5
Typical electricity generation costs @ 1300 kWh/kWp·yr**) (2009 €/kWh)	>2	0.7	0.20 - 0.30	0.10 – 0.15	<0.07	0.03
Commercial flat-plate module efficiencies (STC)	up to 8%	up to 12%	up to 20%	up to 23%	up to 25%	up to 40%
Commercial concentrator module efficiencies	(~10%)	Up to 20%	up to 30%	up to 35%	up to 40%	up to 60%
System energy pay- back time @ 1300 kWh/kWp·yr (yrs)	>10	>5	<2	<1	0.5	0.25

^{*)} The range refers to power plants, large and small systems on buildings, respectively.

^{**) 25} yrs amortisation, 6% cost of capital, 1% O&M&insurance costs (PVTP NPV/FiT model).

It is noted that generation costs may be calculated to be higher or lower if other parameter values are chosen.

Views on cost reduction largely coincide: EU PV TP Implementation Plan

Rounded, indicative figures	1980	1995	2009	2020	2030	Long term potential
Typical turn-key system price (2009 €/Wp)	>30	10	3 - 4.5°)	1.5 - 2.3	<1	0.5
Typical electricity generation costs @ 1300 kWh/kWp·yr**) (2009 €/kWh)	>2	0.7	0.20 - 0.30	0.10 – 0.15	<0.07	0.03

Views on cost reduction largely coincide: Solar Europe Industry Initiative

		2007	2010	2015	2020
Turn-key price larger systems (€/Wp)*		≥5	2,5-3,5	2	1,5
PV electricity generation cost in Southern EU (€/kWh)**		0.30 – 0.60	0.13 – 0.25	0.10 – 0.20	0.07 – 0.14
Typical PV module efficiency range (%)	Crystalline silicon	13 - 18%	15 - 20%	16 - 21%	18 - 23%
	Thin films	5 - 11%	6 - 12%	8 - 14%	10 - 16%
	Concentrators	20%	20 - 25%	25 - 30%	30 - 35%
Inverter lifetime (years)		10	15	20	>25
Module lifetime (years)		20 - 25	20 - 25	25 - 30	35 - 40
Energy pay-back time (years)***		2 - 3	1 - 2	1	0.5
Cost of PV + small-scale storage (€/kWh) in Southern EU (grid-connected)****			0.35	0.22	<0.15

^{*} System price depends on technology and market maturity

^{**} LCoE varies with financing cost and location. Insolation range considered here 1500 - 2000 kWh/m² per year

^{***} Best values

^{****} Estimated figures based on EUROBAT roadmaps

Views on cost reduction largely coincide: Solar Europe Industry Initiative

	2007	2010	2015	2020
Turn-key price larger systems (€/Wp)*	≥5	2,5-3,5	2	1,5
PV electricity generation cost in Southern EU (€/kWh)**	0.30 – 0.60	0.13 – 0.25	0.10 – 0.20	0.07 – 0.14

Views on cost reduction largely coincide: PV2030+ Roadmap, Japan

Price-experience curves of PV modules

(combined effects of innovation, experience and scale)

Source: EPIA, October 2009

From module price to generation cost

Generation cost determined by:

- turn-key system price (€ /Wp)
 - module price + Balance-of-System price
 (power-related part & area-related part)
- energy output (kWh/Wp·yr)
 - primarily dependent on annual insolation
 - influenced by system quality and design, partial shading, etc.
- operation and maintenance cost (€/Wpyr)
- cost of capital:
 - depreciation time (yr)
 - interest rate / Return on Investment required (%)

Contents

- What is (needed for) very large-scale application of PV?
 - The challenge quantified
- Where are we?
 - State of the art in technology and market
- Visions, scenarios and roadmaps
 - Technology and implementation targets
 - About modules & systems, cost & price, kWp & kWh
- Approaches
 - The technology portfolio and corresponding R&D areas
 - Environmental and societal issues
- Outlook

Technical requirements for low cost PV electricity generation

- High conversion efficiency at cell, module and system levels
- Low materials consumption & low-cost materials
- High-throughput, high-yield manufacturing
- Low-labour (fast & flexible) installation
- High reliability, low maintenance & long lifetime
- Intelligent grid integration

Evolution of technology portfolio and module efficiencies (IEA PV Roadmap, 2010)

Source: IEA PVPS.

Selected hot topics in global PV R&D

- high-efficiency (20-25%) wafer silicon PV with integrated cell & module designs
- high efficiency (15-40%) thin-film multi-junction devices
- nanotechnology for very high efficiency and/or very low cost, including printed semiconductors (CIGS, Si, organic, ...)
- reduction of use and replacement of non-earth-abundant, hazardous and expensive materials (In, Te, Ge, Ag, Pb, etc.)
- low-cost, high-quality encapsulants
- technology and concepts for high grid penetration
- and, of course:

Routes to very high efficiency

Photovoltaic conversion: basic process and losses

Routes to very high efficiency

Solar spectrum and spectral losses

Routes to (very) high efficiency

potential & limits (simplified)

Ideal cells

Loss factor

- spectral losses

- recombination and curve loss

 $\eta \le \sim 30\%$ (1 sun)

Selected remedies

multi-gap & multi-band cells, spectrum shaping, hot carrier cells multi-carrier generation

concentration light management

Practical cells and modules: add

- extra recombination
- shadowing and reflection
- transmission
- resistance
- non-optimal band gap

Routes to (very) high efficiency

potential & limits (simplified)

Ideal cells

Loss factor

- spectral losses

- recombination and curve loss

η≤~30% (1 sun)

Selected remedies

- multi-gap & multi-band cells,
 spectrum shaping, hot carrier cells
 multi-carrier generation
- concentration, light management

-η<75~85%

Practical cells and modules: add

- extra recombination
- shadowing and reflection
- transmission
- resistance
- non-optimal band gap

Routes to (very) high efficiency

potential & limits (simplified)

Ideal cells

Loss factor

- spectral losses

- recombination and curve loss

η≤~30% (1 sun)

Selected remedies

- multi-gap & multi-band cells,
 spectrum shaping, hot carrier cells
 multi-carrier generation
- concentration, light management

Practical cells and modules: add

- extra recombination
- shadowing and reflection
- transmission
- resistance
- non-optimal band gap

$$\eta = 0 \sim 42\%$$
 (upward potential to >60% for lab cells, >50% for commercial modules)

Sustainability:

carbon footprint of selected electricity generating technologies

Mariska de Wild-Scholten, Environmental Sustainability of Thin Film PV 2nd EPIA International Thin Film Conference, 12 November 2009, Munich

Sustainability:

finding the best way from current to ultimate

Photovoltaic technologies: the benefits of diversity

Pholovollaic (PV) solar cells and modules convert sunlight into electricity. A wafer-based as well as thin-film technologies are already commercially averone are under development in laboratories and in pilot production. As a resultechnology as a whole is very robust. For instance, prices have come down consumptions and they are expected to show the same trend for decades to come.

SCIENTIFIC *

A Plan for a

Public support, a key asset: not to be taken for granted

ENERGY-

David JC MacKay

"THIS IS TO ENERGY AND CLIMAT WHAT FREAKONOMIC

SUSTAINABLE

WITHOUT THE HOT AIR

Contents

- What is (needed for) very large-scale application of PV?
 - The challenge quantified
- Where are we?
 - State of the art in technology and market
- Visions, scenarios and roadmaps
 - Technology and implementation targets
 - About modules & systems, cost & price, kWp & kWh
- Approaches
 - The technology portfolio and corresponding R&D areas
 - Environmental and societal issues
- Outlook

PV technologies: the common view

PV module cost (per unit area)

PV technologies: an alternative view

PV module cost (per unit area)

The research challenge summarized

- managing the technology/topics portfolio: broad & robust vs deep & efficient
- finding the right balance between short, medium and long term / basic and applied
- crossing the 'valley of death' and minimizing the time from lab to fab
- finding the optimum between budgets for R&D and market development

Effects of volume and R&D on price

Cumulative volume of installed systems (log scale)

