

SMART GRIDS WEEK SALZBURG 2010

Austrian Smart Grid Pioneers in Dialogue Guest Countries: Germany and Switzerland

D-A-CH Workshop Conference June 22, 2010 June 23 to 25, 2010

Invitation

EUROPEAN INDUSTRIAL INITIATIVE ON ELECTRICITY GRIDS

Eugenio Di Marino, Head of Engineering and Standardization

ENEL Infrastructures and Networks Division

Salzburg, 23rd of June 2010

Outline

- Electricity networks towards 2020
- The EEGI Roadmap and Implementation plan
- Financing the program
- KPIs and Knowledge sharing
- Cooperation with other initiatives
- Conclusions

Electricity Networks in the 21-st century: towards 2020

External

- **20-20-20** EU Goals
- Electricity consumption growth
- Large increase of unpredictable renewable energy sources
- Security of supply
- The Third Energy Package

Internal

- Reduce the total costs of the power system
- Replacement of ageing infrastructures
- Integrate low-carbon generation sources
- Support energy efficient demand side technologies
- Enable the active participation of customers to the energy market
- Enable the electrification of the transport sector
- Increase the network **flexibility** to face 2050 scenarios

The European Electricity Grid Initiative (EEGI)

Networks are the enabling factor of a sustainable development

Vision

by 2020 the electricity networks in Europe will:

1. Actively integrate efficient new generation and consumption models:

- Integrate new intermittent renewable resources at the different voltage levels
- Support and enable energy efficiency by end users
- Enable and integrate active demand from end users
- Enable and integrate new electricity uses, in particular recharging infrastructure for electric vehicles and increasing electric heating (heat pumps)

2. Coordinated planning and operation of the whole Electricity Network

- Coordinate planning and operation for the pan European transmission network through ENTSO-E with dedicated solutions developed in the EEGI program
- Coordinate planning and operation between transmission and distribution networks with dedicated solutions developed in the EEGI program

3. Study and propose new market rules to maximize European welfare

- Study and recommend new market rules both at national and European level.
- Enable new business opportunities and innovations for market players

Objectives

- The EEGI has been created to accelerate the development of the electricity networks of the future in Europe, the Smart Grids
- The EEGI will conduct the extra RD&D efforts needed to develop new solutions to overcome the following barriers:
 - Technology barriers including standards, interoperability, cyber security and data privacy
 - RD&D organization barriers including the fragmentation of efforts
 - Market failures and distortions: present incentives are not sufficient for network operators to invest
 - Public barriers including customer engagement and public acceptance

The characteristics of the EEGI

- The program is focusing on the electricity system innovation
- The Grid Initiative is an enabler for other energy technology initiatives, in particular Solar and Wind
- The validity of the developed innovations needs the implementation on real networks under real operating conditions
- The network operators will ensure that new developments provide a level playing field for the competitive activities of market players.
- The network operators, through the interaction with the regulators, aim at optimizing the overall electricity system efficiency.

unctional level

GRID

SMART

Smart Grids Model

Level 5: Smart Customers

Customers aware and actively participating

Level 4: Smart Energy Management

Management of end-use energy efficiency, aggregation, retail

Level 3: Smart Integration

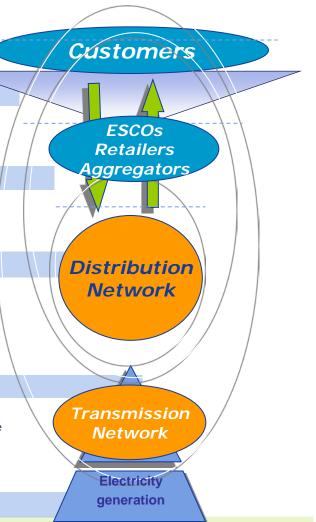
Renewable energy, DG, electric vehicles, electricity storage and aggregation

Level 2: Smart distribution network and processes

More automated MV distribution networks with self healing capabilities.

Monitored and controlled LV networks

IT supported monitoring process


Level 1: Smart Pan-European Transmission network

Novel approaches to develop a pan-European grid

Affordable technologies to make the transmission system more clever and flexible Critical building blocks to operate the interconnected transmission system in real time and reliably

Market simulation techniques to develop a single European electricity market

Level 0: New generation technologies

The 14 Functional Projects on transmission networks

SMART GRIDS MODEL

Level 1: Smart pan-European

Cluster 1: Pan-European Grid architecture
Novel approaches to develop a pan-European Grid

Cluster 2: Power technologies

Affordable technologies to make the transmission system more clever and flexible

Cluster 3: Network management and control Critical building blocks to operate the interconnected transmission system in real-time and reliably

Cluster 4: Market rules

Market simulation techniques to develop a single European electricity market

Functional projects

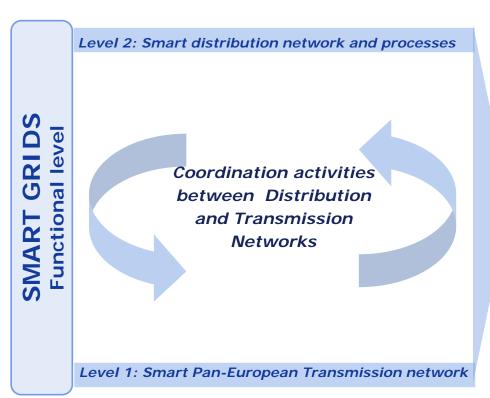
- T1. A toolbox for new network architecture assessment
- T2. Tools to analyze the pan-European network expansion options
- T14.Innovative approaches to improve the public acceptance of overhead lines
- T3. Demonstrations of power technologies for more network flexibility
- T4. Demonstrations of power technologies for new architectures
- T5. Demonstrations of renewable integration
- T6. Tools for pan-European network observab.
- T7. Tools for coordinated operations with stability margin evaluation
- T8. Improved training tools for improved coordination
- T9. Tools for pan-European network reliability assessment
- T10. Tools for pan-European balancing markets
- T11. Advanced tools for congestion management
- T12. Tools for renewable market integration of active demand
- T13. Tools to study market integration of active demand

MART GRIDS Functional level

Transmission activities

RD&D Roadmap

Mill EUR


Smart Grids Functionalities	Project	YEAR										Total	2010-
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Costs	2012
Pan-European Grid Architectures(R&D)	T1		A tool bo	ool box for new network architecture assessment								19	19
	T2	REALIS	EGRID		alyze the pan European pansion options							21	21
Power Technologies (Demonstration)	Т3				Demonstr.of Power technologies for more network flexibility							80	1
	T4				Demons	Demonstrations of Power technologies for new archtectures							1
	T5		WIND, WIN		Demonstration of renewable integration (ct'd)							130	
Network management and	T6		PEGASE		Tools fo	Tools for a Pan European network observability						12	
	T7		Tools fo	or coordinate	ed operations with stability margin evaluation							24	24
control (R&D)	Т8				Improved training tools for improved coordination						25		
	Т9			Tools fo	or Pan European network reliability assessment							14	14
	T10				Tools for	Pan Europe	ean balancin	g markets				18	
New market design options (R&D)	T11				Advanced tools for congestion management					ent		21	
	T12	(OPTIMAT	Е	Tools fo	or renewable integration						14	
	T13				Tools to study market integration of active demand				emand		12		
Pan-European Grid Architectures(R&D)	T14		Innovative approaches to improve the public acceptance of overhead lines						50	30			
										1	otal	560	108

The 5 Functional Projects on transmission/distribution networks coordination

SMART GRIDS MODEL

Functional projects

- TD1. Increased observability of the electric system for network management and control
- TD2. The integration of demand side management in TSO operations
- TD3. Ancillary services provided by DSOs
- TD4. Improved defence and restoration plans
- TD5. Joint task force on IT system protocols and standards

Transmission/distribution networks coordination *RD&D Roadmap*

Mill EUR

	YEAR										Total	2010-
Project	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Costs	2012
TD1		Increased observability of the electric system for network management and control									45	18
TD2		The integration of demand side management in TSO operations									70	7
TD3		Ancillary services provided by DSOs								50	10	
TD4		Improved defense and restoration plans								45	14	
TD5		Joint Task force on IT system protocols and standards							20	19		
										Total	230	68

The 12 Functional Projects on distribution networks

SMART GRIDS MODEL

Level 5: Smart Customers

Customers aware and actively participating

Level 4: Smart Energy Management

Management of end-use energy efficiency, aggregation, retail

Level 3: Smart Integration

ICT supported processes

Renewable energy, DG, electric vehicles, electricity storage and aggregation

Level 2: Smart Distribution network

More automated MV distribution networks with self healing capabilities.

Monitored and controlled LV networks

Functional projects

Cluster 1: Integration of smart customers

- **D1. Active Demand Response**
- D2. Energy Efficiency from integration with Smart Homes

Cluster 2: Integration of smart metering

- D3. Metering infrastructure
- D4. Smart metering data processing

Cluster 3: Integration of DER and new uses

- D5. DSO integration of small DER
- D6. System integration of medium DER
- D7. Integration of storage in network mgt
- D8. Infrastructure to host EV/PHEV

Cluster 4: Smart Distribution Network

- D9. Monitoring and control of LV network
- D10. Automation and control of MV network
- D11. Methods and system support
- D12. Integrated communication solutions

Distribution activities

RD&D Roadmap

Mill EUR

Smart Grids	Project	YEAR										Total	2010-
Functionalities		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	Costs	2012
Active Demand Response and integration with Smart Homes	D1	ADDRESS			Active Demand Response							190	
	D2	BEW Smart Homes	Integration with Smart Homes							120			
Smart Metering Infrastructure & Data Processing	D3	OPEN METI Existing Deploy		Smart Metering Infrastructure						150	150		
	D4	Existing Deployment	Smart	Metering	g Data Pro	cessing						20	20
Integration of RES,	D5	Active Distribution Network			Integration of small DER						90	90	
	D6	Active Distribution Network	Last a source			tion of medium DER						150	150
storage and EV	D7	STORAGE TE	Integration of storage technologies						60	-			
	D8	ELECTRIC VEH		Integration of Electric Vehicles							100	100	
	D9	Active Distribution Network Monitoring and control of LV ne						tworks				100	100
Planning, monitoring and control	D10	Active Distribution Network	Automation and Control of MV networks							90	90		
	D11		New	method	ds and sy	stems su _l	oport					80	80
Integrated communication Infrastructure	D12	Active Distribu Network	Integrated Communications Solution 1						50	50			
Smart Grids Week - Salzburg 2010 Total								1,200	830				

EEGI Program budget - summary

- Total program cost estimation is around € 2 bn in 9 years (2010 2018)
- The cost estimation of the priority actions that need to start in 2010-2012 is around € 1 bn

Roadmap	Priority projects costs (€M) Start 2010-12	Other projects costs (€M) Start 2013-	Total costs (€M)
Transm./distrib. coordination	68	162	230
Transmission networks	108	452	560
Distribution networks	830	370	1,200
Total	1,006	984	1,990

 The results are beneficial for the whole European energy value chain, requiring a comprehensive funding that must involve EC, the Member States, the regulators and industry.

Financing the program

- According to the Third Internal Energy Market package, tariffs should ensure that network operators are granted appropriate incentives, including support to related research activities.
- New appropriate tariff schemes are not expected to be active in a majority of Member States in the period 2010-2012.
- A significant share of public funding would be needed from
 - European sources to
 - encourage the European-level planning and cooperation
 - to avoid unnecessary duplication of efforts
 - supporting European standardization and interoperability
 - National support to
 - encourage substantial benefits at national level
 - cover costs of the market players to encourage knowledge sharing related to new activities and opportunities

Key Performance Indicators (KPIs)

The key performance indicators will encompass three levels of performance measurements of the EEGI roadmap:

- Level 1 Program KPIs indicate the ability to reach the 2020 European Energy Policy targets with acceptable costs.
- Level 2 Program KPIs are defined to measure:
 - the economic effectiveness of the roll-out of innovations validated by the EEGI program
 - the technical and implementation effectiveness of the EEGI program
- Level 3 Project KPIs: These KPIs are defined on a case by case basis to monitor the performance of the single project and its contribution to the program goals.

The KPIs are being finalized by the Network Operators in collaboration with SETIS

Knowledge sharing

The **sharing of knowledge**, in compliance with the necessary protection of the related intellectual property rights, depends on the source of funding and is based on the following principles:

- The **technical functionalities** of the solutions and the **general results** of the experiments are made available to all interested stakeholders upon request.
- The sharing of intellectual property related to the detailed technical solutions to implement the projects will depend on the source of financing and on the stakeholders involved
- Network operators will grant access to new software developments for members of the network associations (ENTSO-E and EDSO-SG) at a reasonable cost

Cooperation with other Initiatives

The **coordination and cooperation** between the EEGI and the other European Industry Initiatives is important to ensure that:

- all necessary new requirements concerning grid integration of low-carbon energy sources are addressed
- RD&D activity overlaps between the initiatives are minimized

Coordination with:

- Solar: the allocation of responsibilities was defined in June 2009
- Wind: a first allocation of responsibilities has been agreed in May 2010

Cooperation launched with:

- EERA
- EU ERA NET Smart Grids www.eranet-smartgrids.eu
- Other Initiatives (Storage, Electric Car, Smart Buildings)

Conclusions

- The implementation of EEGI program is a key element to reach the 20/20/20 goals and beyond
- Grid operators are fully committed to lead the EEGI based on a strong cooperation between Transmission and Distribution.
 Suitable involvement of relevant stakeholders is a must for the EEGI success.
- Guidelines for financing the program have been developed and budgets
 must be dedicated now to start the first projects at the beginning of 2011.
- The coordination process with other initiatives and stakeholders will continue in order to guarantee coherence and avoid RD&D activity overlaps.

THANKS FOR YOUR ATTENTION