
## ARP - Die erneuerbare Energie-Tochter des Verbund



- Dach für alle Verbund-Aktivitäten im Bereich erneuerbare Energien
- Aufgaben & Zielsetzungen
  - > Beitrag zum profitablen Wachstums des Konzerns
  - > Aufbau eines Erzeugungsportfolios; erster Schritt 400 MW
  - > von Greenfield-Projekten bis zur Akquisition von bestehenden Erzeugungsanlagen
  - Zieltechnologie: Windkraft, Zielländer: Österreich, Schwarzmeerküste 2 Länder / 1 Region, Kroatien
  - Weitere Aktivitäten: Photovoltaik (Spanien)
  - > Operative Forschung
- Management:
  - > Birgit Cserny, Geschäftsführerin
  - Dieter Meyer, Geschäftsführer

### VERBUND – Renewables-Aktivitäten auf einen Blick





KRV

# Verbund in Spanien

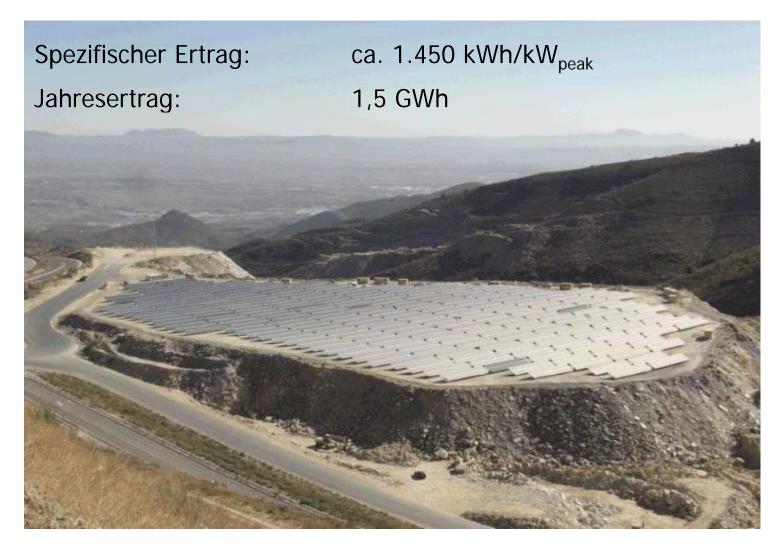




- VERBUND-Photovoltaics Iberica S.L.
  - > 100 % Tochtergesellschaft der ARP
  - Bündelung sämtlicher Fotovoltaikaktivitäten in Spanien unter einem Dach
  - > bereits 2 Anlagen realisiert
  - Mercadillo 2 MW, 3,7 GWh/a, einachsig nachgeführt, seit September 2008 am Netz
  - Macael 1 MW, 1,5 GWh/a, starr, seit Oktober 2008 am Netz
  - > Operator: KIOTO Photovoltaics Iberica S.L.






# **PV-Kraftwerk Mercadillo**



Spezifischer Ertrag: ca. 1.900 kWh/kW<sub>peak</sub> Jahresertrag: 3,7 GWh

## **PV-Kraftwerk Macael**

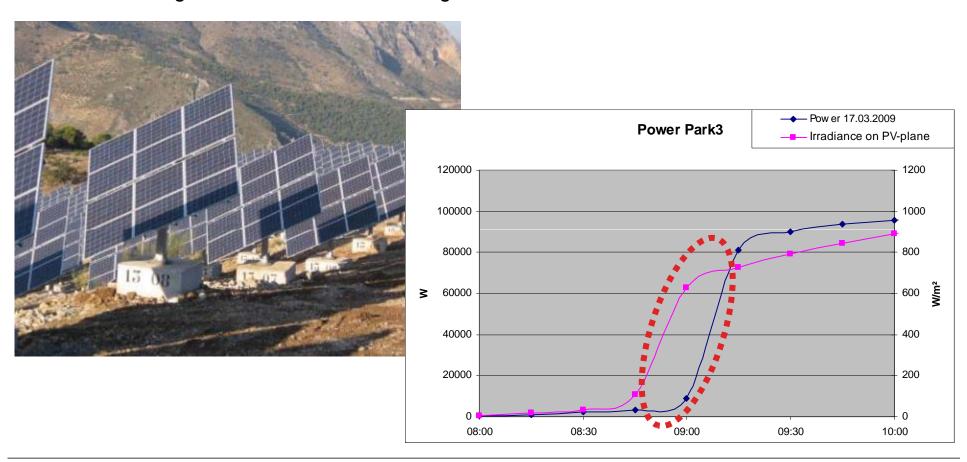




Ansicht der Gesamtanlage (1,5 MW)

#### **Operative F&E im Bereich Photovoltaik**

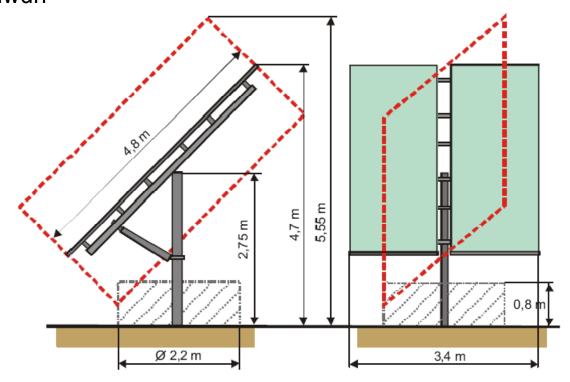



### 3 Beispiele für operative F&E bei Verbund im Bereich Photovoltaik

- Ertragsoptimierung des PV-Kraftwerkes Mercadillo mittels Backtracking
- Lebenszyklusanalyse (Life Cycle Analysis, LCA) und Energy-Pay-Back-Time (EPBT) der PV-Kraftwerke Mercadillo und Macael
- Modulteststand an der PV-Anlage Loser

## **Backtracking der PV-Anlage Mercadillo**




- Tracker verschatten sich in den Morgen- und Abendstunden gegenseitig
  - >Leistungseinbußen durch Verschattung
  - >Bereits geringfügige Teilabschattungen eines Strangs bedeuten erhebliche Leistungseinbußen in diesem Strang



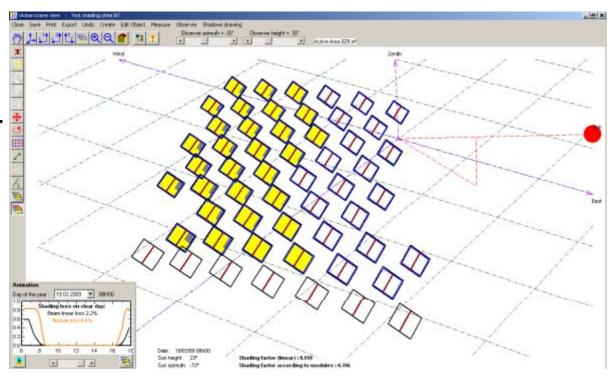
## **Optimierung durch Backtracking**



- Tracker werden morgens und abends nicht direkt der Sonne nachgeführt
  - Sie werden aus der maximalen Winkelstellung wieder in eine flachere Position gebracht, um gegenseitigen Schattenwurf zu minimieren.
- Geringfügige Verringerung der eingestrahlten Energie wegen flacherem Einstrahlungswinkel, insgesamt Mehrertrag durch das Verhindern von Schattenwurf



## **Backtracking: Optimierung - Methodik**



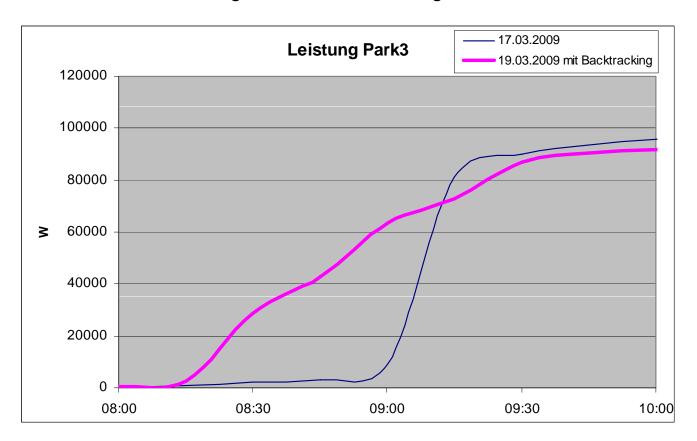

- Simulation der Anlage in PVSYST
  - > Darstellung der Anlage mit den topographischen Gegebenheiten
  - Berechnung der Verschattungen mit Hilfe von Sonnenbahn-Diagrammen

Analyse der Schattenbildung und Festlegung der optimalen Winkelstellungen

für die Nachführung

 Neue Parameter werden direkt an die Steuerung der Tracker weitergegeben




grau: tatsächliche Verschattungen

gelb: von Verschattungen betroffene Tracker

# **Ergebnisse Backtracking**



- > Beispiel Park 3:
  - > Zwei aufeinander folgende Schönwettertage



Mehrertrag: 26 kWh oder ca. 3% der Tageserzeugung

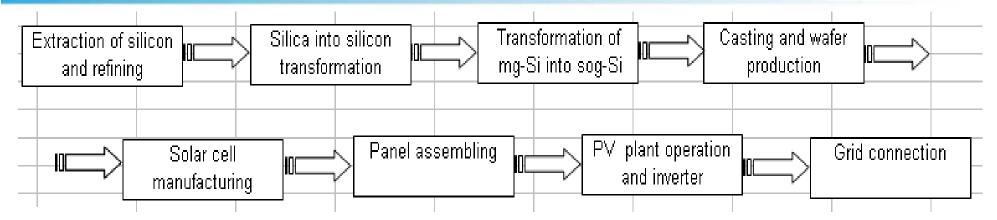
### **Ergebnisse Backtracking**

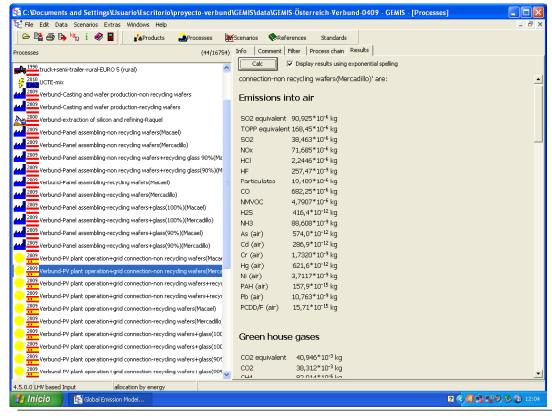


- Größerer Bedarf an Optimierung während des Winters
  - > Allerdings geringere Energieeinstrahlung als im Sommer
- Der kumulierte Mehrertrag des ganzen Jahres wird auf ca. 3 bis 5 % geschätzt.
- Optimierung des Backtrackings ist verhältnismäßig aufwendig
  - PV-Kraftwerke sollten so geplant werden, dass Backtracking nur vereinzelt nötig ist (d.h. Abstände zwischen den Trackern müssen ausreichend groß gewählt werden)
- Dieses Projekt läuft in Zusammenarbeit mit FH Technikum Wien und Kioto.

## Lebenszyklusanalyse: Mercadillo und Macael





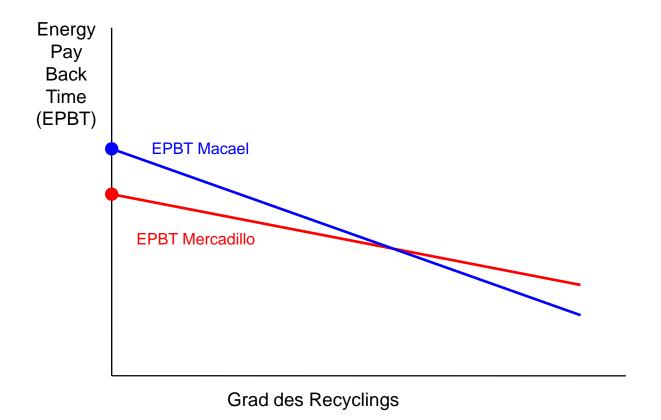




- > Simulation verschiedener Szenarien mit der Ökobilanz-Software GEMIS®
- Berechnung der Energy-Pay-Back-Time (EPBT) und der CO<sub>2</sub>-Payback-Time der PV-Kraftwerke Mercadillo und Macael

### Lebenszyklusanalyse: Abbildung der Prozessschritte








- Implementation in die Ökobilanz-Software GEMIS®
- Berücksichtigung der Rohstoffe, Transporte, Umwandlungsverluste von der Herstellung des Siliziums bis hin zum Recycling

## Lebenszyklusanalyse: erste Ergebnisse



Energy-Pay-Back-Time (EPBT) der nachgeführten Anlage ist geringer als die der starren Anlage (ohne Recycling): ca. 1,2 Jahre



## Lebenszyklusanalyse: erste Ergebnisse



- Energy-Pay-Back-Time (EPBT) der Anlage mit Recycling ist geringer als die der Anlage ohne Recycling
- CO<sub>2</sub>-Equivalent: ca. 40 g/kWh
- zum Vergleich: Kohlekraftwerk ca. 1000 g/kWh
- In Zusammenarbeit mit Universität Zaragossa, FH Technikum Wien und Umweltbundesamt

## **Modulteststand: Eckdaten PV-Anlage Loser**



- Lage: Nähe Loserhütte auf ca. 1500 m Seehöhe
- Leistung: 30 kW<sub>peak</sub>
- Module: Siemens, Kyocera, Arco (je 10 kWpeak)
- Wechselrichter: Fronius IG 400 (2006 nachgerüstet)
- Ertrag: ca. 1100 kWh/kW<sub>peak</sub>, also ca. 33.000 kWh/Jahr



### **Modulteststand: Ziele**



Probebetrieb und Installation eines Messaufbaues für die Modulkennlinienmessung (U-I-Kennlinie) für die Langzeitmessung von Degradation und Einstrahlungs- und Jahreszeitenabhängigkeit des Wirkungsgrades



#### Modulteststand: Benchmark der Messkonzepte



- In Zusammenarbeit mit Energie AG und FH Technikum Wien
- Festlegung der Messgrößen (U, I, Modultemperatur, Einstrahlung)
- Konzept für Messaufbau, inklusive Datenfernauslesung
- Assemblierung des Messaufbaus
- Probebetrieb des Messaufbaus
- Installation des Modulmessaufbaus
- Testbetrieb und Datenaufbereitung

$$\eta \_Modul_{gemessen} = \left[\frac{E[Wh]}{G\_E[Wh/m^2]*A\_Anl[m^2]}\right]$$



